Spice Model Package 7/7 Triodes

**********************************************************************
* current model set and versions:
*
* 2a3 [3.1, 05/01/98 ]
* 3cx300 [3.0, 30/12/97 ]
* sv6as7 [3.0, 30/12/97 ]
* 6bm8 / ecl82 [3.0, 31/12/97 ]
* 6dj8 / ecc88 [3.0, 15/08/98 ]
* 6n1p [3.0, 25/01/98 ]
* 6sn7gtb [3.0, 30/12/97 ]
* 12at7 / ecc81 [3.0, 30/12/97 ]
* 12au7 / ecc82 [3.0, 30/12/97 ]
* 12ax7 / ecc83 [3.0, 30/12/97 ]
* 76 [3.0, 12/02/98 ]
* 300b [3.1, 06/01/98 ]
* sv572-3 [3.0, 31/12/97 ]
* sv572-10 [3.0, 20/06/98 ]
* 5751 [3.0, 15/02/98 ]
**********************************************************************
* core model version history:
*
* 1.0 23/09/97 initial model
* 1.1 19/11/97 model altered for 1 gig resistors between each node *
* and ground
* 2.0 18/12/97 two new parameters, erp and eri added
* 3.0 30/12/97 new parameter added, ras
* 3.1 05/01/98 eri parameter removed
* 3.2 06/01/98 fix errors in pspice model
* 3.3 13/01/98 fixed errors with cdo parameter
* 3.4 25/01/98 errors with heater versions using eri fixed
**********************************************************************
.subckt triode a g k h1 h2
+params: rco=1.6 rho=10.5 htv=6.3 hwu=10.5
+ lip=1 lif=3.7e-3 raf=18e-3 ras=1 cdo=0 rap=4e-3
+ erp=1.5
+ mu0=17.3 mur=19e-3 emc=9.6e-6 gco=0 gcf=213e-6
+ cga=3.9p cgk=2.4p cak=0.7p

************************************************************************
*
* heater model
*
* can be operated from ac or dc power sources.
* nb: when operating from dc power sources, “skip initial transient
* solution” must be checked, to make use of this model.
*
* parameters
*
* rco heater resistance cold (ohms)
* rho heater resistance hot (ohms)
* htv normal heater voltage (v)
* hwu heater time to warm up to 90% of emission (seconds)
*
************************************************************************

rcool h1 ha {rco}
rload ha hb 1m
esens hd 0 value {v(ha,hb)*1000}
epwr he 0 value {v(h1,h2)*v(hd)/(pwr({htv},2)/{rho})}
rh1 he hf 91k
ch1 hf 0 {hwu/1e6}
eh2 hg 0 value {v(hf)}
rh2 hg hh 270k
ch2 hh 0 {hwu/1e6}
eh3 hj 0 value {limit{v(hh)-0.75,0,1e6}*4}
rh3 hj hk 91k
ch3 hk 0 {hwu/1e6}
ghot hb h2 value {(1/(v(hg)+0.001))/({rho}-{rco})*v(hb,h2)}

************************************************************************
*
* anode/grid model
*
* models reduction in mu at large negative grid voltages
* models change in ra with negative grid voltages
* models limit in ia with high +vg and low va
*
* parameters
*
* lip conduction limit exponent
* lif conduction limit factor
* cdo conduction offset
* raf anode resistance factor for neg grid voltages
* rap anode resistance factor for positive grid voltages
* erp emission power
* mu0 mu between grid and anode at vg=0
* mur mu reduction factor for large negative grid voltages
* emc emission coefficient
* gco grid current offset in volts
* gcf grid current scale factor
*
************************************************************************

elim li 0 value {pwr(limit{v(a,k),0,1e6},{lip})*{lif}}
egg gg 0 value {v(g,k)-{cdo}}
erpf rp 0 value {1-pwr(limit{-v(gg)*{raf},0,0.999},{ras})+limit{v(gg),0,1e6}*{rap}}
egr gr 0 value {limit{v(gg),0,1e6}+limit{(v(gg))*(1+v(gg)*{mur}),0,-1e6}}
eem em 0 value {limit{v(a,k)+v(gr)*{mu0},0,1e6}}
eep ep 0 value {pwr(v(em),erp)*{emc}*v(rp)}
eel el 0 value {limit{v(ep),0,v(li)}}
eld ld 0 value {limit{v(ep)-v(li),0,1e6}}
ga a k value {v(hk)*v(el)}

************************************************************************
*
* grid current model
*
* models grid current, along with rise in grid current at low va
*
************************************************************************
egf gf 0 value {pwr(limit{v(g,k)-{gco},0,1e6},1.5)*{gcf}}
gg g k value {(v(gf)+v(ld))*v(hk)}

*
* capacitances and anti-float resistors
*
cm1 g k {cgk}
cm2 a g {cga}
cm3 a k {cak}
rf1 a 0 1000meg
rf2 g 0 1000meg
rf3 k 0 1000meg

.ends

.subckt triodenh a g k
+params: lip=1 lif=3.7e-3 raf=18e-3 ras=1 cdo=0 rap=4e-3
+ erp=1.5
+ mu0=17.3 mur=19e-3 emc=9.6e-6 gco=0 gcf=213e-6
+ cga=3.9p cgk=2.4p cak=0.7p

************************************************************************
*
* anode/grid model
*
* models reduction in mu at large negative grid voltages
* models change in ra with negative grid voltages
* models limit in ia with high +vg and low va
*
* parameters
*
* lip conduction limit exponent
* lif conduction limit factor
* cdo conduction offset
* raf anode resistance factor for neg grid voltages
* rap anode resistance factor for positive grid voltages
* erp emission power
* mu0 mu between grid and anode at vg=0
* mur mu reduction factor for large negative grid voltages
* emc emission coefficient
* gco grid current offset in volts
* gcf grid current scale factor
*
************************************************************************

elim li 0 value {pwr(limit{v(a,k),0,1e6},{lip})*{lif}}
egg gg 0 value {v(g,k)-{cdo}}
erpf rp 0 value {1-pwr(limit{-v(gg)*{raf},0,0.999},{ras})+limit{v(gg),0,1e6}*{rap}}
egr gr 0 value {limit{v(gg),0,1e6}+limit{(v(gg))*(1+v(gg)*{mur}),0,-1e6}}
eem em 0 value {limit{v(a,k)+v(gr)*{mu0},0,1e6}}
eep ep 0 value {pwr(v(em),erp)*{emc}*v(rp)}
eel el 0 value {limit{v(ep),0,v(li)}}
eld ld 0 value {limit{v(ep)-v(li),0,1e6}}
ga a k value {v(el)}

************************************************************************
*
* grid current model
*
* models grid current, along with rise in grid current at low va
*
************************************************************************
egf gf 0 value {pwr(limit{v(g,k)-{gco},0,1e6},1.5)*{gcf}}
gg g k value {(v(gf)+v(ld))}

*
* capacitances and anti-float resistors
*
cm1 g k {cgk}
cm2 a g {cga}
cm3 a k {cak}
rf1 a 0 1000meg
rf2 g 0 1000meg
rf3 k 0 1000meg

.ends
**********************************************************************
* generic: 2a3
* model: nh2a3
* notes: no heater model (virtual cathode)
**********************************************************************
.subckt nh2a3 a g k
xv1 a g k triodenh
+params: lip= 1.5 lif= 0.003 raf= 0.0082 ras= 0.423522 cdo= 0
+ rap= 0.005 erp= 1.55
+ mu0= 4.2 mur= 0.0015 emc= 0.0000868
+ gco= 0 gcf= 0.0001
+ cga=1.65e-11 cgk=7.50e-12 cak=5.50e-12
.ends

**********************************************************************
* generic: 3cx300
* model: nh3cx300
* notes: no heater model
**********************************************************************
.subckt nh3cx300 a g k
xv1 a g k triodenh
+params: lip= 1.5 lif= 10 raf= 0.00536 ras= 1 cdo= 0
+ rap= 0.005 erp= 1.25
+ mu0= 8.321 mur= 0.0012 emc= 0.000533
+ gco= 0 gcf= 0.0001
+ cga=1.00e-11 cgk=2.50e-11 cak=1.00e-12
.ends

**********************************************************************
* generic: sv6as7
* model: nhsv6as7
* notes: no heater model
**********************************************************************
.subckt nhsv6as7 a g k
xv1 a g k triodenh
+params: lip= 1 lif= 0.01 raf= 0.0058 ras= 0.7 cdo= 0
+ rap= 0.035 erp= 1.5
+ mu0= 2.05 mur= 0.0017 emc= 0.0005
+ gco= 0 gcf= 0
+ cga=1.10e-11 cgk=8.00e-12 cak=3.00e-12
.ends

**********************************************************************
* generic: 6bm8 / ecl82
* model: nh6bm8
* notes: no heater or grid model
**********************************************************************
.subckt nh6bm8 a g k
xv1 a g k triodenh
+params: lip= 1.5 lif= 10 raf= 0.030667 ras= 5 cdo=-0.5
+ rap= 0.587 erp= 1.5
+ mu0= 50 mur= 0.035 emc= 0.00000256
+ gco= 0 gcf= 0
+ cga=4.00e-12 cgk=2.70e-12 cak=4.00e-12
.ends

**********************************************************************
* generic: 6dj8 / ecc88
* model: nh6dj8
* notes: no heater or grid current model
**********************************************************************
.subckt nh6dj8 a g k
xv1 a g k triodenh
+params: lip= 1.5 lif= 10 raf= 0.09 ras= 0.2 cdo= 0
+ rap= 0 erp= 1.35
+ mu0= 33 mur= 0.02 emc= 0.0000795
+ gco=-0.2 gcf= 0
+ cga=1.40e-12 cgk=3.30e-12 cak=1.80e-12
.ends

**********************************************************************
* generic: 6n1p
* model: nh6n1p
* notes: no heater/grid model
**********************************************************************
.subckt nh6n1p a g k
xv1 a g k triodenh
+params: lip= 1.5 lif= 10 raf= 0.01 ras= 1 cdo= 0
+ rap= 0 erp= 1.6
+ mu0= 37.5 mur= 0.01 emc= 0.000005
+ gco= 0 gcf= 0
+ cga=1.60e-12 cgk=3.20e-12 cak=1.50e-12
.ends

**********************************************************************
* generic: 6sn7gtb
* model: 6sn7gtb
* notes: has heater model (one half of heater)
**********************************************************************
.subckt duncan_6sn7gtb a g k h1 h2
xv1 a g k h1 h2 triode
+params: rco= 3.2 rho= 21 htv= 6.3 hwu= 10.5
+ lip= 1 lif= 0.0037 raf= 0.02 ras= 2 cdo= 0
+ rap= 0.002 erp= 1.4
+ mu0= 19.2642 mur= 0.006167 emc= 0.0000189
+ gco= 0 gcf= 0.000213
+ cga=3.90e-12 cgk=2.40e-12 cak=7.00e-13
.ends

**********************************************************************
* generic: 6sn7gtb
* model: nh6sn7gtb
* notes: no heater model
**********************************************************************
.subckt nh6sn7gtb a g k
xv1 a g k triodenh
+params: lip= 1 lif= 0.0037 raf= 0.02 ras= 2 cdo= 0
+ rap= 0.002 erp= 1.4
+ mu0= 19.2642 mur= 0.006167 emc= 0.0000189
+ gco= 0 gcf= 0.000213
+ cga=3.90e-12 cgk=2.40e-12 cak=7.00e-13
.ends

**********************************************************************
* generic: 12at7 / ecc81
* model: 12at7
* notes: heater model for one half of heater (6.3v)
**********************************************************************
.subckt duncan_12at7 a g k h1 h2
xv1 a g k h1 h2 triode
+params: rco= 6.2 rho= 42 htv= 6.3 hwu= 10.5
+ lip= 1 lif= 0.0037 raf= 0.09869 ras= 1 cdo=-0.5
+ rap= 0.1 erp= 1.4
+ mu0= 45.093 mur= 0.012937 emc= 0.00000863
+ gco=-0.5 gcf= 0.00012
+ cga=1.60e-12 cgk=2.30e-12 cak=4.00e-13
.ends

**********************************************************************
* generic: 12at7 / ecc81
* model: nh12at7
* notes: no heater model
**********************************************************************
.subckt nh12at7 a g k
xv1 a g k triodenh
+params: lip= 1 lif= 0.0037 raf= 0.09869 ras= 1 cdo=-0.5
+ rap= 0.1 erp= 1.4
+ mu0= 45.093 mur= 0.012937 emc= 0.00000863
+ gco=-0.5 gcf= 0.00012
+ cga=1.60e-12 cgk=2.30e-12 cak=4.00e-13
.ends

**********************************************************************
* generic: 12au7 / ecc82
* model: 12au7
* notes: heater model for one half of heater (6.3v)
**********************************************************************
.subckt duncan_12au7 a g k h1 h2
xv1 a g k h1 h2 triode
+params: rco= 6.2 rho= 42 htv= 6.3 hwu= 10.5
+ lip= 1 lif= 0.0037 raf= 0.0041813 ras= 16.48 cdo= 0
+ rap= 0.032 erp= 1.35
+ mu0= 14.036 mur= 0.006488 emc= 0.0000236
+ gco= 0 gcf= 0.00012
+ cga=1.60e-12 cgk=1.80e-12 cak=4.50e-13
.ends

**********************************************************************
* generic: 12au7 / ecc82
* model: nh12au7
* notes: no heater model
**********************************************************************
.subckt nh12au7 a g k
xv1 a g k triodenh
+params: lip= 1 lif= 0.0037 raf= 0.0041813 ras= 16.48 cdo= 0
+ rap= 0.032 erp= 1.35
+ mu0= 14.036 mur= 0.006488 emc= 0.0000236
+ gco= 0 gcf= 0.00012
+ cga=1.60e-12 cgk=1.80e-12 cak=4.50e-13
.ends

**********************************************************************
* generic: 12ax7 / ecc83
* model: 12ax7
* notes: heater model for one half of heater (6.3v)
**********************************************************************
.subckt duncan_12ax7 a g k h1 h2
xv1 a g k h1 h2 triode
+params: rco= 6.2 rho= 42 htv= 6.3 hwu= 10.5
+ lip= 1.5 lif= 0.000016 raf= 0.076498 ras= 1 cdo=-0.53056
+ rap= 0.18 erp= 1.5
+ mu0= 87.302 mur=-0.013621 emc= 0.00000111
+ gco=-0.2 gcf= 0.00001
+ cga=3.90e-12 cgk=2.40e-12 cak=7.00e-13
.ends

**********************************************************************
* generic: 12ax7 / ecc83
* model: nh12ax7
* notes: no heater model
**********************************************************************
.subckt nh12ax7 a g k
xv1 a g k triodenh
+params: lip= 1.5 lif= 0.000016 raf= 0.076498 ras= 1 cdo=-0.53056
+ rap= 0.18 erp= 1.5
+ mu0= 87.302 mur=-0.013621 emc= 0.00000111
+ gco=-0.2 gcf= 0.00001
+ cga=3.90e-12 cgk=2.40e-12 cak=7.00e-13
.ends

**********************************************************************
* generic: 76
* model: nh76
* notes: no heater/grid model
**********************************************************************
.subckt nh76 a g k
xv1 a g k triodenh
+params: lip= 1 lif= 10 raf= 0.015 ras= 1.8 cdo= 0
+ rap= 0 erp= 1.6
+ mu0= 12.8 mur= 0.001 emc= 0.000008
+ gco= 0 gcf= 0
+ cga=2.80e-12 cgk=3.50e-12 cak=2.50e-12
.ends

**********************************************************************
* generic: 300b
* model: nh300b
* notes: no heater/grid model (virtual cathode)
**********************************************************************
.subckt nh300b a g k
xv1 a g k triodenh
+params: lip= 1 lif= 10 raf= 0.00311 ras= 1.013608 cdo= 0
+ rap= 0 erp= 1.5
+ mu0= 3.7992 mur= 0.000362 emc= 0.000116
+ gco= 0 gcf= 0
+ cga=1.50e-11 cgk=9.00e-12 cak=4.30e-12
.ends

**********************************************************************
* generic: sv572-3
* model: sv5723
* notes: no heater model (virtual cathode)
**********************************************************************
.subckt nhsv5723 a g k
xv1 a g k triodenh
+params: lip= 1 lif= 0.0018 raf= 0.0012 ras= 0.5 cdo= 0
+ rap= 0 erp= 1.4
+ mu0= 3.79928 mur= 0.0002 emc= 0.0000425
+ gco= 0 gcf= 0.0000349
+ cga=4.00e-12 cgk=4.00e-12 cak=1.00e-12
.ends

**********************************************************************
* generic: sv572-10
* model: sv57210
* notes: this model is not accurate for vg >= +60v
**********************************************************************
.subckt nhsv57210 a g k
xv1 a g k triodenh
+params: lip= 1.4 lif= 0.0008 raf= 0.001 ras= 1 cdo= 0
+ rap=-0.00117 erp= 1.38
+ mu0= 10 mur= 0.0001 emc= 0.0000272
+ gco=-0.2 gcf= 0.0003
+ cga=5.00e-12 cgk=6.40e-12 cak=1.00e-12
.ends

**********************************************************************
* generic: 5751
* model: nh5751
* notes: no heater model
**********************************************************************
.subckt nh5751 a g k
xv1 a g k triodenh
+params: lip= 1.5 lif= 0.000016 raf= 0.075772 ras= 1 cdo=-0.53056
+ rap= 0.131285 erp= 1.5
+ mu0= 62.94685 mur=-0.0111 emc= 0.00000142
+ gco=-0.2 gcf= 0.00001
+ cga=1.40e-12 cgk=1.40e-12 cak=4.50e-13
.ends

* model used: “improved vt models for spice simulations,”
* norman koren, glass audio 5/96.
* plate parameters determined by computerized optimization using excel xp and solver, aug 13, 2001.
* plate data from http://www.mclink.it/com/audiomatica/sofia/.
* interelectrode capacitances are based on data found on http://www.duncanamps.co.uk/cgi-bin/tdsl3.exe/;
* however, the reliability of the hf characteristics for this model is probably
* not very high. it is likely that that additional complexity will be required
* to better model the hf behavior–including the inclusion of heater terminals
* in order to explicitly incorporate grid, plate, and cathode to heater
* capacitances. and don’t forget to add parasitic capacitances of ~0.7 pf
* for adjacent pins and ~0.5 pf for others (see koren’s article) as well as for
* the effects of a shield (if used).
* no guarantees of any kind are made regarding the accuracy or suitability
* of any part of this model. use at your own risk.
*
* connections: plate
* | grid
* | | cathode
* | | |
.subckt 2a3_mr 1 2 3
+ params: mu=4.5 ex=1.65 kg1=1590.6 kp=41.23 kvb=0
+ rgi=2000
+ ccg=16.5p cgp=7.5p ccp=5.5p ; http://www.fidelisaudio.com/datalib/pdfs/2a3.pdf

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt 6c45p-e_mr 1 2 3
+ params: mu=43.64 ex=3 kg1=473.14 kp=504.59 kvb=0
+ rgi=2000
+ ccg=10p cgp=5p ccp=1.8p ; http://digilander.iol.it/paeng/vtw.htm

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g

g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt 6l6gc_mr 1 2 3
+ params: mu=10.11 ex=1.37 kg1=406.6 kp=31.2 kvb=640.7
+ rgi=2000
+ ccg=12.5p cgp=10p ccp=1.5p ; http://www.jj-electronic.sk/tube_6l6gc.htm

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt 6sl7_mr 1 2 3
+ params: mu=90.41 ex=1.25 kg1=597.32 kp=511.97 kvb=6747.79
+ rgi=2000
+ ccg=2.15p cgp=3.5p ccp=0.9p

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6sn7_mr 1 2 3
+ params: mu=22.23 ex=1.31 kg1=668.85 kp=179.77 kvb=243.78
+ rgi=2000
+ ccg=2.6p cgp=4.1p ccp=0.8p

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt 12at7_mr 1 2 3
+ params: mu=62.73 ex=1.23 kg1=296.08 kp=232.56 kvb=842.96
+ rgi=2000
+ ccg=2.2p cgp=1.5p ccp=0.5p ; http://www.fidelisaudio.com/datalib/pdfs/12at7.pdf

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(1*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt 12ax7_mr 1 2 3
+ params: mu=97.66 ex=1.17 kg1=552.01 kp=621.78 kvb=6979.1
+ rgi=2000
+ ccg=1.6p cgp=1.7p ccp=0.46p

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt 300b_mr 1 2 3
+ params: mu=4.132 ex=1.7 kg1=2300.2 kp=47.345 kvb=0
+ rgi=2000
+ ccg=9p cgp=15p ccp=4.36p

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6550_mr 1 2 3
+ params: mu=8.7 ex=1.39 kg1=277.4 kp=40.2 kvb=102
+ rgi=2000
+ ccg=15p cgp=0.8p ccp=10p

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt e88cc_mr 1 2 3
+ params: mu=36.34 ex=1.35 kg1=129.3 kp=292.92 kvb=217.61
+ rgi=2000
+ ccg=3.1p cgp=1.4p ccp=0.18p ; http://www.jj-electronic.sk/tube_e88cc.htm

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt el34_mr 1 2 3
+ params: mu=10.98 ex=1.42 kg1=249.65 kp=43.2 kvb=333
+ rgi=2000
+ ccg=15.2p cgp=1.1p ccp=8.4p ; http://frank.nostalgiaair.org/sheets/010/e/el34.pdf

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt kt66_mr 1 2 3
+ params: mu=8.9 ex=1.4 kg1=590.32 kp=60 kvb=802.7
+ rgi=2000
+ ccg=8.7p cgp=1.1p ccp=11.5p

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* connections: plate
* | grid
* | | cathode
* | | |
.subckt sv811-10_mr 1 2 3
+ params: mu=9.21 ex=1.28 kg1=1117.35 kp=88.47 kvb=2213.32
+ rgi=2000
+ ccg=7p cgp=8p ccp=0.45p ; http://www.svetlana.com/docs/tubeframe.html

e1 7 0 value={v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g

g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/(2*kg1) }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt krn_300b 1 2 3 ; p g c; new model
+ params: mu=3.95 ex=1.4 kg1=1550 kp=65 kvb=300 rgi=1000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_300b
*$
.subckt krn_6c33c 1 2 3 ; p g c; two cathodes from borbely, ga 5/96.
+ params: mu=3.1 ex=1.4 kg1=163 kp=15 kvb=300 rgi=1000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_6c33c

*$
.subckt krn_2a3 1 2 3 ; p g c; new model
+ params: mu=4.2 ex=1.4 kg1=1500 kp=60 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_2a3

*$
.subckt krn_5842 1 2 3 ; plate grid cathode
+ params: mu=42.4 ex=2.21 kg1=393 kp=629 kvb=446 rgi=2000
+ ccg=9p cgp=1.8p ccp=.48p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_5842

*$
.subckt krn_6111 1 2 3 ; plate grid cathode PENCIL TUBE
+ params: mu=21.85 ex=1.551 kg1=1112 kp=1596.45 kvb=34.6 rgi=2000
+ ccg=2.1p cgp=1.4p ccp=1.3p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_6111

*$
* 6sl7gt triode pspice model 8/96, rev. 1.0 (fp)
*
* ——————————————————————-
* this model is provided “as is”, with no warranty of any kind,
* either expressed or implied, about the suitability or fitness
* of this model for any particular purpose. use of this model
* shall be entirely at the user’s own risk.
*
* for a discussion about vacuum tube modeling please refer to:
* w. marshall leach, jr: “spice models for vacuum-tube amplifiers”;
* j. audio eng. soc., vol 43, no 3, march 1995.
* ——————————————————————-
*
* this model is valid for the following tubes:
* 6sl7gt, ecc35, 5691;
* at the following conditions:
* plate voltage : 0..450v
* grid voltage : 0..-6v
* cathode current: 0..8ma
*
*
* connections: plate
* | grid
* | | cathode
* | | |
.subckt krn_6sl7gt a g k
e1 2 0 value={v(a,k)+65.5*v(g,k)}
r1 2 0 1.0k
gp a k value={1.54e-6*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}
cgk g k 3.2p
cgp g a 2.8p
cpk a k 3.5p
rak a k 1g
rgi g x 2k
d3 x k dx
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_6sl7gt

*$
* 6sn7gtb triode pspice model 8/96, rev. 1.0 (fp)
*
* ——————————————————————-
* this model is provided “as is”, with no warranty of any kind,
* either expressed or implied, about the suitability or fitness
* of this model for any particular purpose. use of this model
* shall be entirely at the user’s own risk.
*
* for a discussion about vacuum tube modeling please refer to:
* w. marshall leach, jr: “spice models for vacuum-tube amplifiers”;
* j. audio eng. soc., vol 43, no 3, march 1995.
* ——————————————————————-
*
* this model is valid for the following tubes:
* 6sn7gtb, ecc32, 6fq7/6cg7, 5692;
* at the following conditions:
* plate voltage : 0..450v
* grid voltage : 0..-18v
* cathode current: 0..30ma
*
*
* connections: plate
* | grid
* | | cathode
* | | |
.subckt krn_6sn7gtb a g k
e1 2 0 value={v(a,k)+20.43*v(g,k)}
r1 2 0 1.0k
gp a k value={10.89e-6*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}
cgk g k 2.4p
cgp g a 4.0p
cpk a k 0.7p
rak a k 1g
rgi g x 2k
d3 x k dx
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_6sn7gtb
*$
* 12bh7a triode pspice model 9/96, rev. 1.0 (fp)
*
* ——————————————————————-
* this model is provided “as is”, with no warranty of any kind,
* either expressed or implied, about the suitability or fitness
* of this model for any particular purpose. use of this model
* shall be entirely at the user’s own risk.
*
* for a discussion about vacuum tube modeling please refer to:
* w. marshall leach, jr: “spice models for vacuum-tube amplifiers”;
* j. audio eng. soc., vol 43, no 3, march 1995.
* ——————————————————————-
*
* this model is valid for the following tubes:
* 12bh7a;
* at the following conditions:
* plate voltage : 0..600v
* grid voltage : 0..-35v
* cathode current: 0..50ma
*
*
* connections: plate
* | grid
* | | cathode
* | | |
.subckt krn_12bh7a a g k
e1 2 0 value={v(a,k)+16.64*v(g,k)}
r1 2 0 1.0k
gp a k value={22.34e-6*(pwr(v(2),1.5)+pwrs(v(2),1.5))/2}
cgk g k 3.2p
cgp g a 2.6p
cpk a k 0.5p
rak a k 1g
rgi g x 2k
d3 x k dx
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_12bh7a
*$
.subckt krn_6h30 a g k
+ params: mu=14.82339 ex=1.386938 kg1=255.6717 kp=99.30537 kvb=1042.421
+ lg=0.2u vbig=-0.1 eg=1.414474 kg=0.000769 krg=5 kvg=0.027177
+ ccg=6.3p cgp=6.5p ccp=2.4p cch=8p
e1 7 0 value = {v(a,k) / kp * log(1 + exp(kp * (1/mu + v(g,k) / sqrt(kvb + v(a,k) * v(a,k)))))}
re1 7 0 1g
g1 a k value = {(pwr(v(7), ex) + pwrs(v(7), ex)) / kg1}
rcp a k 1g ;
c1 g k {ccg} ;
c2 g a {cgp} ;
c3 a k {ccp} ;
c4 k 0 {cch} ;
e10 10 0 value = {if(v(a) – v(k) > 0, v(a) – v(k), 0)}
e11 11 0 value = {if(v(g) – v(k) > vbig, v(g) – v(k) – vbig, 0)}
e12 12 0 value = {(kg * (v(11) ** eg) *
+ (((krg – 1) / (kvg * v(10) + 1)) + 1)) + lg}
g2 g k value = {if(v(12) > lg, v(12), lg)}
.ends

*$
*———————————————————————–
* filename: 6as7.inc v1 25/8/97
* simulator: pspice
* device type: power triode
* device model: svetlana 6as7
*
* author: duncan munro
* date: 25/8/97
* copyright: (c)1997-2000 duncan amplification
*
* the following parameters are not modelled:
*
* (1) heater is not modelled.
*
* (2) grid current is not modelled.
*
* please note that this model is provided “as is” and
* no warranty is provided in respect of its suitability
* for any application.
*
* this model is provided for educational and non-profit use.
*
* email queries to postmaster@duncanamps.com
*
* pins a anode
* g grid
* k cathode
*
*———————————————————————–

.subckt krn_6as7 a g k
*
* calculate reduction in mu at large negative
* grid voltages
*
emu mu 0 value={pwrs(v(g,k),0.88)}
*
* emission reduction due to low va
*
eel el 0 value={atan(limit{v(a,k),0,1e6}/10)}
*
* calculate change in shape with reducing grid voltage
*
eshape shape 0 value={(220+v(g,k))/220}
*
egs gs 0 value={limit{v(a,k)+v(mu)*2.8,0,1e6}}
egs2 gs2 0 value={pwrs(v(gs)*v(shape),1.5)*410e-6}
ecath cc 0 value={v(gs2)*v(el)}
*
* calculate anode current
*
ga a k value={v(cc)}
*
* capacitances
*
cgk g k 8p
cga a g 11p
cak a k 3p

rak a k 1g
rgi g x 2k
d3 x k dx
.model dx d(is=1n rs=1 cjo=0 tt=1n)

.ends

*$
.subckt krn_6n1p a g k

************************************************************************
*
* anode model
*
* models reduction in mu at large negative grid voltages
* models change in ra with negative grid voltages
* models limit in ia with high +vg and low va
*
* parameters
*
* lip conduction limit exponent
* lif conduction limit factor
* raf anode resistance factor for neg grid voltages
* rap anode resistance factor for positive grid voltages
* mu0 mu between grid and anode at vg=0
* mur mu reduction factor for large negative grid voltages
* emc emission coefficient
* gcf grid current scale factor
*
************************************************************************

.param lip 1
.param lif 1e-3
.param raf 9e-3
.param rap 4e-3
.param mu0 38
.param mur 19e-3
.param emc 9.6e-6
.param gcf 213e-6
elim li 0 value {pwr(limit{v(a,k),0,1e6},{lip})*{lif}}
erpf rp 0 value {1+limit{v(g,k),0,-1e6}*{raf}+limit{v(g,k),0,1e6}*{rap}}
egr gr 0 value {limit{v(g,k),0,1e6}+limit{v(g,k)*(1+v(g,k)*{mur}),0,-1e6}}
eem em 0 value {limit{v(a,k)*v(rp)+v(gr)*{mu0},0,1e6}}
eep ep 0 value {pwr(v(em),1.5)*{emc}}
eel el 0 value {limit{v(ep),0,v(li)}}
eld ld 0 value {limit{v(ep)-v(li),0,1e6}}
ga a k value {v(el)}

************************************************************************
*
* grid current model
*
* models grid current, along with rise in grid current at low va
*
************************************************************************
egf gf 0 value {pwr(limit{v(g,k),0,1e6},1.5)*{gcf}}
gg g k value {(v(gf)+v(ld))}

*
* capacitances
*
cgk g k 2.4p
cga a g 3.9p
cak a k 0.7p

rcp a k 1g ; to avoid floating nodes in mu-follower

.ends
*$

.subckt krn_5687 1 2 3 ; p g c; new model
+ params: mu=28 ex=1.3 kg1=330 kp=320 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.1p ccp=.7p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends
*$

* comment out one of the two models below (old or new). use old temporarily for article.
* .subckt krn_12ax7 1 2 3 ; p g c; old model
* + params: mu=93 ex=1.5 kg1=1360 kp=10000 kvb=0 rgi=2000
* + ccg=2.3p cgp=2.4p ccp=.9p ; add .7pf to adjacent pins; .5 to others.
.subckt 12ax7 1 2 3 ; p g c; new model
+ params: mu=100 ex=1.4 kg1=1060 kp=600 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.4p ccp=.9p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid
c2 2 1 {cgp} ; grid=plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends
*$

.subckt krn_12au7 1 2 3 ; p g c; new model
+ params: mu=21.5 ex=1.3 kg1=1180 kp=84 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends
*$

.subckt krn_12at7 1 2 3 ; p g c; new model
+ params: mu=60 ex=1.35 kg1=460 kp=300 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends
*$

.subckt krn_6dj8 1 2 3 ; p g c; new model
+ params: mu=28 ex=1.3 kg1=330 kp=320 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.1p ccp=.7p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends

.SUBCKT 8203 1 2 3 ; P G C (Triode)
+ PARAMS: MU= 37.27 EX= 1.333 KG1= 158.5 KP=182.92
+ KVB= 89.0 VCT= 0.00
* RCA Manual 01-May-2004
.ENDS

.subckt krn_8203 1 2 3 ; p g c; nuvistor
+ params: mu=37.27 ex=1.333 kg1=158.5 kp=182.92 kvb=89 rgi=2000
+ ccg=4.2p cgp=2.2p ccp=.26p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=0 tt=1n)
.ends krn_8203

.subckt krn_e182cc-sq 1 2 3 ; placca griglia catodo
+ params: mu=24 ex=1.7 kg1=75 kp=320 kvb=300 rgi=2k
+ ccg=2.3p cgp=2.4p ccp=.9p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

**********************
.subckt krn_6sn7i 1 2 3 ; placca griglia catodo
+ params: mu=21 ex=1.36 kg1=1460 kp=150 kvb=400 rgi=300
+ ccg=2.4p cgp=4p ccp=.7p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
********************
.subckt krn_2a3-x 1 2 3 ; placca griglia catodo ***f.i.v.r.e.***
+ params: mu=4.4 ex=1.27 kg1=1106 kp=39.6 kvb=10 rgi=2k
+ ccg=2.3p cgp=2.1p ccp=.7p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
*****************
.subckt krn_2a3-y 1 2 3 ; placca griglia catodo ***f.i.v.r.e.***
+ params: mu=4.4 ex=1.25 kg1=1106 kp=39.6 kvb=10 rgi=2k
+ a=-2.889e-7 b=-1.222e-5 c=1.321
+ ccg=7.5p cgp=16.5p ccp=5.5p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value = {a*v(1,3)*v(1,3)+b*v(1,3)+c}
re2 8 0 1meg
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends 2a3-y ; modello con andamento parabolico esponente ex
*******************
.subckt krn_300b 1 2 3 ; placca griglia catodo *** western electric ***
+ params: mu=3.85 ex=1.264 kg1=1240 kp=89 kvb=10 rgi=2k
+ a=1.119e-6 b=-7.983e-4 c=1.398
+ ccg=9p cgp=15p ccp=4.3p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value = {a*v(1,3)*v(1,3)+b*v(1,3)+c}
re2 8 0 1g
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
******************
.subckt krn_6cw4 1 2 3 ; placca griglia catodo nuvistor r.c.a.
+ params: mu=68.75 ex=1.35 kg1=160 kp=250 kvb=300 rgi=200
+ ccg=4.1p cgp=.92p ccp=.18p
+ a=2.133e-7 b=-9.40e-5 c=.0139666 d=.64
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value=
+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}
re2 8 0 1g
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends krn_6cw4
*************
.subckt 6c45-pe_rydel p g k ;rydel’s models
+params: gp=239.400860 b=496.411534
+ c=2.263 d=5.061974
+ cgk=11p cgp=5p
+ cpk=1.8p mu=47.758898
+ ex=1.5
e1 1 0 value= {1+(v(g,k)/b)}
re1 1 0 100meg
e2 2 0 value= {v(p,k)/(v(p,k)+c)}
re2 2 0 100meg
e3 3 0 value= {v(g,k)+((v(p,k)+d)/mu)}
re3 3 0 100meg
g1 p k value= {(1/2000)*gp*v(1)*v(2)*(pwr(v(3),ex)+pwrs(v(3),ex))}
rpk p k 100meg
c1 g k {cgk}
c2 g p {cgp}
c3 p k {cpk}
.ends
******************************
.subckt e182cc_rydel p g k ;rydel’s models triode mode
+params: gp=0.00035349 b=36443491.15
+ c=8.843336963 d=81.53628791
+ cgk=11p cgp=5p
+ cpk=1.8p mu=24
e1 1 0 value= {1+(v(g,k)/b)}
re1 1 0 100meg
e2 2 0 value= {v(p,k)/(v(p,k)+c)}
re2 2 0 100meg
e3 3 0 value= {v(g,k)+((v(p,k)+d)/mu)}
re3 3 0 100meg
g1 p k value= {gp*v(1)*v(2)*((1/2)*(pwr(v(3),1.5)+pwrs(v(3),1.5)))}
rpk p k 100meg
c1 g k {cgk}
c2 g p {cgp}
c3 p k {cpk}
.ends
********************************
.subckt e55l_rydel p g k ;rydel’s models triode mode
+params: gp=0.004735979219 b=3734.604234
+ c=0.3266713215 d=79.54627249
+ cgk=11p cgp=5p
+ cpk=1.8p mu=30
e1 1 0 value= {1+(v(g,k)/b)}
re1 1 0 100meg
e2 2 0 value= {v(p,k)/(v(p,k)+c)}
re2 2 0 100meg
e3 3 0 value= {v(g,k)+((v(p,k)+d)/mu)}
re3 3 0 100meg
g1 p k value= {gp*v(1)*v(2)*(pwr(v(3),1.5)+pwrs(v(3),1.5))}
rpk p k 100meg
c1 g k {cgk}
c2 g p {cgp}
c3 p k {cpk}
.ends
********************************
.subckt 6c33c_m_rydel p g k ;rydel’s models
+params: g=2.957e-3 b=16.976 mu=2.2
+ k=0.941 vc=-0.578
+ cgk=11p cgp=5p
+ cpk=1.8p
v_eddy 10 0 2.984
r_eddy1 10 11 0.504k
r-break 11 0 {m}
e1 1 0 value= {1+(v(g,k)/(b-(v(g,k)/k)))}
re1 1 0 100meg
e2 2 0 value= {v(g,k)+((v(p,k)+vc)/v(11))}
re2 2 0 100meg
g1 p k value= {g*v(1)*(pwr(v(2),1.5)+pwrs(v(2),1.5))}
rpk p k 100meg
c1 g k {cgk}
c2 g p {cgp}
c3 p k {cpk}
.ends 6c33c_m_rydel

.subckt 6c33c_rydel p g k ;rydel’s models
+params: g=2.957e-3 b=16.976 mu=1.984
+ k=0.941 vc=-0.578
+ cgk=11p cgp=5p
+ cpk=1.8p
e1 1 0 value= {1+(v(g,k)/(b-(v(g,k)/k)))}
re1 1 0 100meg
e2 2 0 value= {v(g,k)+((v(p,k)+vc)/mu)}
re2 2 0 100meg
g1 p k value= {g*v(1)*(pwr(v(2),1.5)+pwrs(v(2),1.5))}
rpk p k 100meg
c1 g k {cgk}
c2 g p {cgp}
c3 p k {cpk}
.ends
*************************
.subckt 6c15p_rydel p g k ;rydel’s models
+params: g=0.007778398847 b=16.976 mu=2.2
+ k=0.941 vc=-0.578
+ cgk=11p cgp=5p
+ cpk=1.8p
v_eddy 10 0 2.984
r_eddy1 10 11 0.504k
r-break 11 0 {m}
e1 1 0 value= {1+(v(g,k)/(b-(v(g,k)/k)))}
re1 1 0 100meg
e2 2 0 value= {v(g,k)+((v(p,k)+vc)/v(11))}
re2 2 0 100meg
g1 p k value= {g*v(1)*(pwr(v(2),1.5)+pwrs(v(2),1.5))}
rpk p k 100meg
c1 g k {cgk}
c2 g p {cgp}
c3 p k {cpk}
.ends
**************************
.subckt le_vt4c 1 3 4 ; triodo di potenza d.h.t. ( g.e.)
g1 2 4 value = {(exp(1.5*(log((v(2,4)/12)+v(3,4)))))/3010}
c1 3 4 6p
c2 3 1 14.5p
c3 1 4 5.5p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_vt4c ; eq. 211a

.subckt le_6cg7 1 3 4 ; triodo di segnale alta corrente
g1 2 4 value = {(exp(1.5*(log((v(2,4)/20)+v(3,4)))))/990}
c1 3 4 2.3p
c2 3 1 4p
c3 1 4 2.2p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_6cg7 ;

.subckt krn_845i 1 2 3 ; placca griglia catodo r.c.a.
+ params: mu=5.27 ex=1.25 kg1=2560 kp=100 kvb=180 rgi=8000
+ ccg=6p cgp=13.5p ccp=6.5p
+ a=-5.150e-14 b=8.536e-11 c=-1.469e-7 d=4.635e-4
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value=
+{a*v(1,3)*v(1,3)*v(1,3)+b*v(1,3)*v(1,3)+c*v(1,3)+d}
re2 8 0 1g
g1 1 3 value= {(pwr(v(7),ex)+pwrs(v(7),ex))*v(8)}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends krn_845i
*******************
.subckt krn_ecc86 1 2 3 ; placca griglia catodo
********************************************
;modello valido nell’intorno vp=0..10volt
********************************************
+ params: mu=14 ex=1.71 kg1=295 kp=220 kvb=100 rgi=2k
+ ccg=3p cgp=1.3p ccp=1.8p
+ a2=0.0083 a1=-0.022 a0=1.1033
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
e2 8 0 value=
+{a2*v(1,3)*v(1,3)+a1*v(1,3)+a0}
re2 8 0 1g
g1 1 3 value= {(pwr(v(7),v(8))+pwrs(v(7),v(8)))/kg1}
rcp 1 3 1g
c1 2 3 {ccg}
c2 1 2 {cgp}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6dj8_nx 1 2 3 ; p g c; new model
+ params: mu=28 ex=1.3 kg1=330 kp=320 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.1p ccp=.7p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 12ax7_nx 1 2 3 ; p g c; new model
+ params: mu=100 ex=1.4 kg1=1060 kp=600 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.4p ccp=.9p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid
c2 2 1 {cgp} ; grid=plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 12au7_nx 1 2 3 ; p g c; new model
+ params: mu=21.5 ex=1.3 kg1=1180 kp=84 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 2a3_nx 1 2 3 ; p g c; new model
+ params: mu=4.2 ex=1.4 kg1=1500 kp=60 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 300b_nx 1 2 3 ; p g c; new model
+ params: mu=3.95 ex=1.4 kg1=1550 kp=65 kvb=300 rgi=1000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 12at7_nx 1 2 3 ; p g c; new model
+ params: mu=60 ex=1.35 kg1=460 kp=300 kvb=300 rgi=2000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid; was 1.6p
c2 2 1 {cgp} ; grid-plate; was 1.5p
c3 1 3 {ccp} ; cathode-plate; was 0.5p
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

 

 

.subckt 6an8t_nx 1 2 3 ; p g c; new model ; triode section
+ params: mu=21.2 ex=1.36 kg1=945 kp=84 kvb=300 rgi=2000
+ ccg=2.7p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* mithat konar library
*
* model used: “improved vt models for spice simulations,”
* norman koren, glass audio 5/96.
* no guarantees of any kind are made regarding the accuracy or suitability
* of any part of this model. use at your own risk.
*
*
* 6sn7 triode pspice model
* plate parameters determined by computerized optimization, march 26, 1998.
* plate data from http://www.mclink.it/com/audiomatica/sofia/.
* interelectrode capacitances are based on data given for rca 6sn7-gta; however,
* the reliability of the hf characteristics for this model is probably not
* very high. it is likely that that additional complexity will be required
* to better model the hf behavior–including the inclusion of heater terminals
* in order to explicitly incorporate grid, plate, and cathode to heater
* capacitances. and don’t forget to add parasitic capacitances of ~0.7 pf
* for adjacent pins and ~0.5 pf for others (see koren’s article) as well as for
* the effects of a shield (if used).

* connections: plate
* | grid
* | | cathode
* | | |
.subckt 6sn7_nx 1 2 3
+ params: mu=22.004 ex=1.2128 kg1=1213.7 kp=203.06 kvb=355.09
+ rgi=2000
+ ccg=2.4p cgp=3.9p ccp=0.7p ;

e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/kg1 }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* 5842/417a triode pspice model
* plate parameters determined by computerized optimization, jan 29, 1998.
* plate data from manufacturer’s published data for 5842.
* interelectrode capacitances are vaguely based on data given for western
* electric 5842/417a; however, the reliability of the hf characteristics for
* this model is probably not very high. it is likely that that additional
* complexity will be required to better model the hf behavior–including the
* inclusion of heater terminals in order to explicitly incorporate grid,
* plate, and cathode to heater capacitances. and don’t forget to add parasitic
* capacitances of ~0.7 pf for adjacent pins and ~0.5 pf for others (see
* koren’s article) as well as for the effects of a shield (if used).
* connections: plate
* | grid
* | | cathode
* | | |
.subckt 5842_nx 1 2 3
+ params: mu=42.4 ex=2.21 kg1=393 kp=629 kvb=446
+ rgi=2000
+ ccg=9.0p cgp=1.8p ccp=0.48p ;

e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={ (pwr(v(7),ex)+pwrs(v(7), ex))/kg1 }
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode grid
c2 2 1 {cgp} ; grid-plate
c3 1 3 {ccp} ; cathode-plate
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

* eugene v. karpov library
* for tube of manufacture in ussr
*
* please note that this model is provided “as is” and
* no warranty is provided in respect of its suitability for any application.
* this model is provided for educational and non-profit use.
*
* email queries to ekar@next-power.net

.subckt 6c33c_nx 1 2 3 ; p g c;(triode) two cathodes, modified model 10/01:
+ params: mu=3.1 ex=1.4 kg1=163 kp=15 kvb=300 rgi=1000
+ ccg=2.3p cgp=2.2p ccp=1.0p ; add .7pf to adjacent pins; .5 to others.
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+v(2,3)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6n8c_nx 1 2 3 ; p g c (triode) 24-oct-2001
+ params: mu= 22.87 ex= 1.516 kg1=2209.8 kp=167.87
+ kvb=155.4 vct=0.70 rgi=1000
+ ccg=3p cgp=1.2p ccp=4p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6n6p_nx 1 2 3 ; p g c (triode) 25-oct-2001
+ params: mu= 17.22 ex= 1.715 kg1=1155.0 kp=87.74
+ kvb=300.0 vct=0.00 rgi=1000
+ ccg=4p cgp=3p ccp=1.9p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6n23p_nx 1 2 3 ; p g c (triode) 26-oct-2001
+ params: mu=33.04 ex=1.220 kg1=212.4 kp=183.83
+ kvb=300.0 vct=0.00 rgi=2000
+ ccg=3.6p cgp=1.5p ccp=2p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6p3c_t_nx 1 2 3 ; p g c (triode mode) 28-oct-2001
+ params: mu=10.76 ex=1.314 kg1=712.7 kp=24.67
+ kvb=300.0 vct=0.00 rgi=1k
+ ccg=11p cgp=1p ccp=8.2p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6n5p_nx 1 2 3 ; p g c (triode)
+ params: mu=23.76 ex=1.244 kg1=300.1 kp=164.49
+ kvb=300.0 vct=0.00 rgi=2k
+ ccg=3p cgp=2.25p ccp=1.5p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6c41c_nx 1 2 3 ; p g c (triode) 30-oct-2001
+ params: mu=2.58 ex=1.450 kg1=689.1 kp=9.98
+ kvb=300.0 vct=0.00 rgi=1k
+ ccg=11p cgp=15p ccp=5p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6n1p_nx 1 2 3 ; p g c (triode) 30-oct-2001
+ params: mu=38.29 ex=1.761 kg1=1430.7 kp=245.76
+ kvb=300.0 vct=0.00 rgi=2k
+ ccg=3p cgp=2.25p ccp=1.5p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt gu50_t_nx 1 2 3 ; p g c (triode mode) 30-oct-2001
+ params: mu=5.41 ex=1.366 kg1=1350.7 kp=34.52
+ kvb=300.0 vct=0.00 rgi=2k
+ ccg=14p cgp=0.1p ccp=9.2p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6p45c_t_nx 1 2 3 ; p g c (triode mode)02-nov-2001
+ params: mu=3.97 ex=1.512 kg1=517.5 kp=43.74
+ kvb=300.0 vct=0.00 rgi=1k
+ ccg=55p cgp=1.5p ccp=20p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6n3p_nx 1 2 3 ; p g c (triode) 16-nov-2001
+ params: mu=31.33 ex=1.979 kg1=1920.5 kp=211.72
+ kvb=300.0 vct=0.00 rgi=1k
+ ccg=25p cgp=1.3p ccp=1.4p
e1 7 0 value=
+{v(1,3)/kp*log(1+exp(kp*(1/mu+(v(2,3)+vct)/sqrt(kvb+v(1,3)*v(1,3)))))}
re1 7 0 1g
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1}
rcp 1 3 1g ; to avoid floating nodes in mu-follower
c1 2 3 {ccg} ; cathode-grid;
c2 2 1 {cgp} ; grid-plate;
c3 1 3 {ccp} ; cathode-plate;
d3 5 3 dx ; for grid current
r1 2 5 {rgi} ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

***************** p g c ************************(copyright vivaAnalog)******
.subckt Maillet_RCA12ax7 1 2 3
*************************
eGIogVpc 20 0 value={log(v(1,3))}
rGlogVpc 20 0 1
eG0 10 0 poly(1) <2,3> -3.7694e+00 1.9947e+00 5.9432e-02
eG1 11 0 poly(1) <2,3> -3.2024e-02 -4.1443e-02 -4.8236e-03
eG2 12 0 poly(1) <2,3> 1.9127e-02 -1.2189e-02 -1.5526e-03
eG3 13 0 poly(1) <2,3> -1.1354e-02 4.9339e-03 6.1016e-04
rG0 10 0 1
rG1 11 0 1
rG2 12 0 1
rG3 13 0 1
gG 2 3 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}
*
eP0 110 0 poly(1) <2,3> -9.9158e+0 1.9145e+0 -2.8135e+0 1.8661e+0
+ 1.5643e+0 4.7240e-1 6.4276e-2 3.3101e-3
eP1 111 0 poly(1) <2,3> 9.5428e-1 3.2558e-2 -8.3349e-1 -4.8578e-2
+ 2.6213e-1 1.0492e-1 1.8921e-2 1.3632e-3
eP2 112 0 poly(1) <2,3> 9.5766e-2 2.5192e-2 2.2391e-1 -1.7040e-1
+ -2.4952e-1 -1.0960e-1 -2.0981e-2 -1.4882e-3
eP3 113 0 poly(1) <2,3> -6.6107e-2 -3.9657e-2 7.5560e-2 3.1025e-2
+ 2.4265e-2 1.7002e-2 4.2512e-3 3.4761e-4
eP4 114 0 poly(1) <2,3> 8.4148e-3 4.7989e-3 -1.3258e-2 -1.9288e-3
+ 5.2888e-4 -5.6853e-4 -2.4727e-4 -2.4359e-5
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
rP4 114 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*(v(113)+v(20)*v(114))))))}
Cgc 2 3 1.8p
Cgp 2 1 1.7p
Cpc 1 3 1.9p
.ends
************************* p g c
.subckt Maillet_triode_GE12at7wc 1 2 3
**************************
ePIog1 20 0 value={log(v(1,3))}
rPlog1 20 0 1
eGp0 10 0 poly(1) <2,3> -2.7764e+00 2.2296e+00 7.5589e-02
eGp1 11 0 poly(1) <2,3> -4.1300e-02 -1.1676e-02 -1.4968e-03
eGp2 12 0 poly(1) <2,3> -2.3014e-02 -1.2650e-02 -2.1541e-03
eGp3 13 0 poly(1) <2,3> 1.0328e-03 1.9344e-03 3.6700e-04
rGp0 10 0 1
rGp1 11 0 1
rGp2 12 0 1
rGp3 13 0 1
gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/3581}
ePp0 110 0 poly(1) <2,3> -3.6500e+00 7.6923e+00 -3.7894e+00 -7.2613e-01
+ -3.4056e-02
ePp1 111 0 poly(1) <2,3> 1.1200e+00 -1.6148e+00 8.2466e-01 1.7359e-01
+ 8.4978e-03
ePp2 112 0 poly(1) <2,3> 3.7117e-03 -5.1629e-02 3.1072e-02 6.1221e-03
+ 2.6104e-04
ePp3 113 0 poly(1) <2,3> 5.5502e-03 1.8236e-02 -1.0661e-02 -2.4714e-03
+ -1.2170e-04
rPp0 110 0 1
rPp1 111 0 1
rPp2 112 0 1
rPp3 113 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends

************************* p g c
.subckt Maillet_triode_GE12ax7wa1 1 2 3
**************************
eGIog1 20 0 value={log(v(1,3))}
rGlog1 20 0 1
eG0 10 0 poly(1) <2,3> -3.7694e+00 1.9947e+00 5.9432e-02
eG1 11 0 poly(1) <2,3> -3.2024e-02 -4.1443e-02 -4.8236e-03
eG2 12 0 poly(1) <2,3> 1.9127e-02 -1.2189e-02 -1.5526e-03
eG3 13 0 poly(1) <2,3> -1.1354e-02 4.9339e-03 6.1016e-04
rG0 10 0 1
rG1 11 0 1
rG2 12 0 1
rG3 13 0 1
gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}
eP0 110 0 poly(1) <2,3> -1.6702e+00 3.9084e+00 -1.5799e+00 -1.3727e-01
+ -1.0348e-03
eP1 111 0 poly(1) <2,3> 1.1947e-01 -3.2355e-01 2.4620e-01 6.2866e-02
+ 3.9416e-03
eP2 112 0 poly(1) <2,3> 6.9903e-02 -7.3976e-02 -4.3982e-02 -6.3812e-03
+ -2.9682e-04
eP3 113 0 poly(1) <2,3> 4.2712e-03 3.4864e-03 8.3734e-03 4.4558e-04
+ -8.4579e-06
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends
***************************************************
.subckt Maillet_triode_GE12ax7wa1b 1 2 3
***************************
eGIoga 20 0 value={log(v(1,3))}
rGloga 20 0 1
eGIogb 21 0 value={log(v(2,3)+7)}
rGlogb 21 0 1
eG0 10 0
value={(exp(-1524.2+v(21)*(2083.2+v(21)*(-951.29+v(21)*(145.16)))))/0.049}
rG0 10 0 1
gG 2 3 value={bnd(v(10)*(exp(-1.2838+v(20)*(-9.2220e-2+v(20)*(-9.4734e-4+
+ v(20)*(-5.0132e-3)))))/1085)}
eP0 110 0 poly(1) <2,3> -1.6702e+00 3.9084e+00 -1.5799e+00 -1.3727e-01
+ -1.0348e-03
eP1 111 0 poly(1) <2,3> 1.1947e-01 -3.2355e-01 2.4620e-01 6.2866e-02
+ 3.9416e-03
eP2 112 0 poly(1) <2,3> 6.9903e-02 -7.3976e-02 -4.3982e-02 -6.3812e-03
+ -2.9682e-04
eP3 113 0 poly(1) <2,3> 4.2712e-03 3.4864e-03 8.3734e-03 4.4558e-04
+ -8.4579e-06
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113))))/1000)}
Cgc 2 3 1.8p
Cgp 2 1 1.7p
Cpc 1 3 1.9p
.ends
************************* p g c
.subckt Maillet_triode_GE12ax7wa2 1 2 3
**************************
eGIog1 20 0 value={log(v(1,3))}
rGlog1 20 0 1
eG0 10 0 poly(1) <2,3> -3.7694e+00 1.9947e+00 5.9432e-02
eG1 11 0 poly(1) <2,3> -3.2024e-02 -4.1443e-02 -4.8236e-03
eG2 12 0 poly(1) <2,3> 1.9127e-02 -1.2189e-02 -1.5526e-03
eG3 13 0 poly(1) <2,3> -1.1354e-02 4.9339e-03 6.1016e-04
rG0 10 0 1
rG1 11 0 1
rG2 12 0 1
rG3 13 0 1
gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/170}
eP0 110 0 poly(1) <2,3> -2.2416e+00 3.8456e+00 -1.0299e+00
+ 2.3909e-02 1.0561e-02
eP1 111 0 poly(1) <2,3> 2.9920e-01 -3.7081e-01 1.3630e-01
+ 3.5417e-02 2.0746e-03
eP2 112 0 poly(1) <2,3> 6.7037e-02 -8.1618e-02 -5.2735e-02
+ -8.6960e-03 -4.7085e-04
eP3 113 0 poly(1) <2,3> 2.2006e-03 6.6606e-03 1.0641e-02
+ 9.4134e-04 2.7545e-05
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends
************************* p g c
.subckt Maillet_triode_GE5751 1 2 3
**************************
eGIog1 20 0 value={log(v(1,3))}
rGlog1 20 0 1
eG0 10 0 poly(1) <2,3> -3.2813e+00 1.7569e+00 2.9338e-02
eG1 11 0 poly(1) <2,3> -9.0720e-02 -2.7519e-02 -3.0229e-03
eG2 12 0 poly(1) <2,3> -1.8084e-02 4.2859e-03 1.7988e-04
eG3 13 0 poly(1) <2,3> 1.1015e-03 4.2800e-04 1.0427e-04
rG0 10 0 1
rG1 11 0 1
rG2 12 0 1
rG3 13 0 1
gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/189}
eP0 110 0 poly(1) <2,3>
+ -4.9584e-1 4.2097e+0 -2.7252e+0 -2.0530e-1 1.3162e-2 1.3347e-3
eP1 111 0 poly(1) <2,3>
+ 2.6000e-2 -3.4437e-1 1.3060e-1 -8.7594e-2 -1.5166e-2 -6.5829e-4
eP2 112 0 poly(1) <2,3>
+ -3.5787e-2 -2.2883e-1 2.4121e-1 1.0443e-1 1.4721e-2 6.5731e-4
eP3 113 0 poly(1) <2,3>
+ 2.0259e-2 2.8834e-2 -3.1118e-2 -1.3945e-2 -2.0977e-3 -9.8313e-5
rP0 110 0 1
rP1 111 0 1
rP2 112 0 1
rP3 113 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends

**************************** p g c
.subckt Maillet_triode_PHLPS12at7wc 1 2 3
****************************
ePIog1 20 0 value={log(v(1,3))}
rPlog1 20 0 1
eGp0 10 0 poly(1) <2,3> -3.4856e+00 1.9216e+00 6.7355e-02
eGp1 11 0 poly(1) <2,3> -2.7396e-02 -4.0726e-02 -5.5367e-03
eGp2 12 0 poly(1) <2,3> -2.5889e-02 -1.0947e-03 -1.2516e-04
eGp3 13 0 poly(1) <2,3> -5.3691e-04 1.5773e-03 2.5402e-04
rGp0 10 0 1
rGp1 11 0 1
rGp2 12 0 1
rGp3 13 0 1
gG 3 2 value={(exp(v(10)+v(20)*(v(11)+v(20)*(v(12)+v(20)*v(13)))))/3581}
ePp0 110 0 poly(1) <2,3> -2.7098e+00 7.6798e+00 -3.8264e+00 -7.3346e-01
+ -3.4417e-02
ePp1 111 0 poly(1) <2,3> 9.6711e-01 -1.6271e+00 8.1943e-01 1.7330e-01
+ 8.4990e-03
ePp2 112 0 poly(1) <2,3> 1.2914e-02 -5.2319e-02 3.8963e-02 7.9005e-03
+ 3.5277e-04
ePp3 113 0 poly(1) <2,3> 1.8966e-03 1.8966e-02 -1.1283e-02 -2.6729e-03
+ -1.3326e-04
rPp0 110 0 1
rPp1 111 0 1
rPp2 112 0 1
rPp3 113 0 1
gP 1 3 value={(exp(v(110)+v(20)*(v(111)+v(20)*(v(112)+v(20)*v(113)))))/1000}
.ends

.subckt le_6FQ7 1 3 4 ; TRIODO DI SEGNALE ALTA CORRENTE
g1 2 4 value = {(exp(1.5*(log((v(2,4)/20)+v(3,4)))))/1049}
c1 3 4 2.4p
c2 3 1 3.6p
c3 1 4 .34p
r1 3 5 10k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_6FQ7 ;

.subckt le_cv5112 1 3 4 ; TRIODO SEGNALE
g1 2 4 value = {(exp(1.5*(log((v(2,4)/47)+v(3,4)))))/32.51}
c1 3 4 11p
c2 3 1 4p
c3 1 4 2.46p
r1 3 5 20k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_cv5112 ; eq. 3a/167m
*
* Ìîäåëü òðèîäà
*
* Ïðè îòðèöàòåëüíûõ íàïðÿæåíèÿõ íà ñåòêå èñïîëüçîâàíà ìîäåëü Êîðåíà,
* ïðè ïîëîæèòåëüíûõ – ìîäåëü, ó÷èòûâàþùàÿ óâåëè÷åíèå òîêà ñåòêè ïðè íèçêèõ íàïðÿæåíèÿõ íà àíîäå.
*
* Íå ó÷èòûâàþòñÿ:
*
* 1) ýôôåêò íàñûùåíèÿ ïðè îòðèöàòåëüíûõ íàïðÿæåíèÿõ íà ñåòêå è áîëüøèõ íàïðÿæåíèÿõ íà àíîäå,
* êîãäà ìîùíîñòü, ðàññåèâàåìàÿ íà àíîäå, çíà÷èòåëüíî áîëüøå ìàêñèìàëüíî äîïóñòèìîé;
* 2) âëèÿíèå íà õàðàêòåðèñòèêè íàïðÿæåíèÿ íàêàëà;
* 3) íåñòàáèëüíîñòü è äèíàìèêà òîêà óòå÷êè ñåòêè.
*
* Ïàðàìåòðû:
*
* MU – êîýôôèöèåíò óñèëåíèÿ ïðè íåáîëüøèõ îòðèöàòåëüíûõ íàïðÿæåíèÿõ íà ñåòêå
* EX – ñòåïåíü, èñïîëüçóåìàÿ âìåñòî êëàññè÷åñêîé 1,5 ïî “çàêîíó 3/2”
* KG1 – óäâîåííàÿ ïðîâîäèìîñòü ëàìïû ïðè íåáîëüøèõ îòðèöàòåëüíûõ íàïðÿæåíèÿõ íà ñåòêå
* KP – ôîðìîîáðàçóþùèé êîýôôèöèåíò òîêà àíîäà, ïîäáèðàåòñÿ ìåòîäàìè ÷èñëåííîé îïòèìèçàöèè
* KVB – ôîðìîîáðàçóþùèé êîýôôèöèåíò òîêà àíîäà, ïîäáèðàåòñÿ ìåòîäàìè ÷èñëåííîé îïòèìèçàöèè
* CCG – âõîäíàÿ åìêîñòü
* CGP – ïðîõîäíàÿ åìêîñòü
* CCP – âûõîäíàÿ åìêîñòü
* LG – òîê óòå÷êè çàïåðòîé ñåòêè – ïîëîæèòåëüíîå ÷èñëî
* VBIG – êîíòàêòíûé ïîòåíöèàë ñåòêè – íàïðÿæåíèå, ïðè êîòîðîì íà÷èíàåò òå÷ü ñåòî÷íûé òîê
* EG – ñòåïåíü âîçðàñòàíèÿ òîêà ñåòêè ïðè âîçðàñòàíèè íàïðÿæåíèÿ íà ñåòêå
* KG – ïðîâîäèìîñòü ñåòêè ïðè áîëüøèõ íàïðÿæåíèÿõ íà àíîäå
* KRG – êîýôôèöèåíò âîçðàñòàíèÿ òîêà ñåòêè ïðè íèçêèõ íàïðÿæåíèÿõ íà àíîäå, äîëæåí áûòü > 1
* KVG – ñêîðîñòü èçìåíåíèÿ òîêà ñåòêè ïðè èçìåíåíèè íàïðÿæåíèÿ íà àíîäå, ÷åì áîëüøå,
* òåì êðó÷å êðèâàÿ çàâèñèìîñòè òîêà ñåòêè îò íàïðÿæåíèÿ íà àíîäå
*
.SUBCKT KTRIODE A G K
+ PARAMS: MU=37.58299 EX=1.132166 KG1=428.9745 KP=402.1368 KVB=321.0256
+ LG=0.2U VBIG=-0.2 EG=1.0389 KG=0.000769 KRG=3.685584 KVG=0.090943
+ CCG=2.4P CGP=3.9P CCP=0.7P CCH=5.6P

E1 7 0 VALUE = {V(A,K) / KP * LOG(1 + EXP(KP * (1/MU + V(G,K) / SQRT(KVB + V(A,K) * V(A,K)))))}
RE1 7 0 1G
G1 A K VALUE = {(PWR(V(7), EX) + PWRS(V(7), EX)) / KG1}
RCP A K 1G ; äëÿ ïðåäîòâðàùåíèÿ “ïëàâàþùèõ” óçëîâ

C1 G K {CCG} ; âõîäíàÿ åìêîñòü
C2 G A {CGP} ; ïðîõîäíàÿ åìêîñòü
C3 A K {CCP} ; âûõîäíàÿ åìêîñòü
C4 K 0 {CCH} ; åìêîñòü ìåæäó êàòîäîì è ïîäîãðåâàòåëåì

E10 10 0 VALUE = {IF(V(A) – V(K) > 0, V(A) – V(K), 0)}
E11 11 0 VALUE = {IF(V(G) – V(K) > VBIG, V(G) – V(K) – VBIG, 0)}
E12 12 0 VALUE = {(KG * (V(11) ** EG) *
+ (((KRG – 1) / (KVG * V(10) + 1)) + 1)) + LG}
G2 G K VALUE = {IF(V(12) > LG, V(12), LG)}
.ENDS

*******************

.SUBCKT 6N30P-DR A G K
X1 A G K KTRIODE
+ PARAMS: MU=14.82339 EX=1.386938 KG1=255.6717 KP=99.30537 KVB=1042.421
+ LG=0.2U VBIG=-0.1 EG=1.414474 KG=0.000769 KRG=5 KVG=0.027177
+ CCG=6.3P CGP=6.5P CCP=2.4P CCH=8P
.ENDS

*Scott’s Library of improved Triode Models*
*Presented at 6th Australian Regional Convention 10th Sept. 1996
*Melbourne- AU*
*AES Pre-Print 4301 Session B-4
.subckt SC_12ax7 p g k
+params: kp=8u kv=28 a=1.21 mu=91
+ cgp=1.5p cgk=1.5p ckp=0.5p
gplate p k
+ value = {kp*(kv*pwr(exp(log((v(g,k)*mu+v(p,k))/kv)+1),a))}
c1 g p {cgp}
c2 g k {cgk}
c3 k p {ckp}
.ends SC_12ax7

* Triodes PSpice Models
* copyright (c) 1998 Mithat Konar — all rights reserved
* copyright (c) 2001 Teodoro Marinucci — all rights reserved
*
* Model used: “Improved VT Models for SPICE Simulations,”
* Norman Koren, Glass Audio 5/96.
* Plate parameters determined by computerized optimization using Excel XP and Solver.
* Plate data from http://www.mclink.it/com/audiomatica/sofia/.
* Interelectrode capacitances are based (unless otherwise specified) on data found
* on http://www.duncanamps.co.uk/cgi-bin/tdsl3.exe/;
* however, the reliability of the HF characteristics for this model is probably
* not very high. It is likely that that additional complexity will be required
* to better model the HF behavior–including the inclusion of heater terminals
* in order to explicitly incorporate grid, plate, and cathode to heater
* capacitances. And don’t forget to add parasitic capacitances of ~0.7 pF
* for adjacent pins and ~0.5 pF for others (see Koren’s article) as well as for
* the effects of a shield (if used).
* No guarantees of any kind are made regarding the accuracy or suitability
* of any part of these models. Use at your own risk.
*
* Connections: Plate
* | Grid
* | | Cathode
* | | |
.SUBCKT miko_2A3 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=4.5 EX=1.65 KG1=1590.6 KP=41.23 KVB=0
+ RGI=2000
+ CCG=16.5P CGP=7.5P CCP=5.5P ; http://www.fidelisaudio.com/datalib/PDFS/2a3.pdf
.ENDS

.SUBCKT miko_6C45P-E 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=43.64 EX=3 KG1=473.14 KP=504.59 KVB=0
+ RGI=2000
+ CCG=10P CGP=5P CCP=1.8P ; http://digilander.iol.it/paeng/vtw.htm
.ENDS

.SUBCKT miko_6L6GC 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=10.11 EX=1.37 KG1=406.6 KP=31.2 KVB=640.7
+ RGI=2000
+ CCG=12.5P CGP=10P CCP=1.5P ; http://www.jj-electronic.sk/tube_6l6gc.htm
.ENDS

.SUBCKT miko_6SL7 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=90.41 EX=1.25 KG1=597.32 KP=511.97 KVB=6747.79
+ RGI=2000
+ CCG=2.15P CGP=3.5P CCP=0.9P
.ENDS

.SUBCKT miko_6SN7 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=22.23 EX=1.31 KG1=668.85 KP=179.77 KVB=243.78
+ RGI=2000
+ CCG=2.6P CGP=4.1P CCP=0.8P
.ENDS

.SUBCKT miko_12AT7 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=62.73 EX=1.23 KG1=296.08 KP=232.56 KVB=842.96
+ RGI=2000
+ CCG=2.2P CGP=1.5P CCP=0.5P ; http://www.fidelisaudio.com/datalib/PDFS/12at7.pdf
.ENDS

.SUBCKT miko_12AX7 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=97.66 EX=1.17 KG1=552.01 KP=621.78 KVB=6979.1
+ RGI=2000
+ CCG=1.6P CGP=1.7P CCP=0.46P
.ENDS

.SUBCKT miko_300B 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=4.132 EX=1.7 KG1=2300.2 KP=47.345 KVB=0
+ RGI=2000
+ CCG=9P CGP=15P CCP=4.36P
.ENDS

.SUBCKT miko_6550 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=8.7 EX=1.39 KG1=277.4 KP=40.2 KVB=102
+ RGI=2000
+ CCG=15P CGP=0.8P CCP=10P
.ENDS

.SUBCKT miko_E88CC 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=36.34 EX=1.35 KG1=129.3 KP=292.92 KVB=217.61
+ RGI=2000
+ CCG=3.1P CGP=1.4P CCP=0.18P ; http://www.jj-electronic.sk/tube_e88cc.htm
.ENDS

.SUBCKT miko_EL34 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=10.98 EX=1.42 KG1=249.65 KP=43.2 KVB=333
+ RGI=2000
+ CCG=15.2P CGP=1.1P CCP=8.4P ; http://frank.nostalgiaair.org/sheets/010/e/EL34.pdf
.ENDS

.SUBCKT miko_KT66 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=8.9 EX=1.4 KG1=590.32 KP=60 KVB=802.7
+ RGI=2000
+ CCG=8.7P CGP=1.1P CCP=11.5P
.ENDS

.SUBCKT miko_SV811-10 1 2 3
XV1 1 2 3 miko_TRIODE
+ PARAMS: MU=9.21 EX=1.28 KG1=1117.35 KP=88.47 KVB=2213.32
+ RGI=2000
+ CCG=7P CGP=8P CCP=0.45P ; http://www.svetlana.com/docs/tubeframe.html
.ENDS

.SUBCKT miko_TRIODE 1 2 3
+ PARAMS: MU=1 EX=1 KG1=1 KP=1 KVB=1
+ RGI=1
+ CCG=1P CGP=1P CCP=1P
E1 7 0 VALUE={V(1,3)/KP*LOG(1+EXP(KP*(1/MU+V(2,3)/SQRT(KVB+V(1,3)*V(1,3)))))}
RE1 7 0 1G
G1 1 3 VALUE={ (PWR(V(7),EX)+PWRS(V(7), EX))/(2*KG1) }
RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER
C1 2 3 {CCG} ; CATHODE GRID
C2 2 1 {CGP} ; GRID-PLATE
C3 1 3 {CCP} ; CATHODE-PLATE
D3 5 3 DX ; FOR GRID CURRENT
R1 2 5 {RGI} ; FOR GRID CURRENT
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
.ENDS

Spice Model Package 6/7 Relays

.subckt relay vt_plus vt_minus in1 in2 out
+params: p_lind=100u p_cind=20p p_rind=60
rrel 10 vt_minus {p_rind}
crel vt_plus vt_minus {p_cind}
lrel vt_plus 10 {p_lind}
s1 vt_plus 11 vt_plus vt_minus smod
s2 11 0 vt_minus 0 smod
s3 vt_plus 12 vt_plus 11 smod
s4 12 0 11 0 smod
s5 out in1 11 0 smod
s6 out in2 12 0 smod
.model smod vswitch (ron=1e-4 roff=1meg von=5 voff=1m)
.ends relay

.subckt dual_relay vt_plus vt_minus in1 in2 out1 in3 in4 out2
+params: p_lind=100u p_cind=20p p_rind=60
rrel 10 vt_minus {p_rind}
crel vt_plus vt_minus {p_cind}
lrel vt_plus 10 {p_lind}
s1 vt_plus 11 vt_plus vt_minus smod
s2 11 0 vt_minus 0 smod
s3 vt_plus 12 vt_plus 11 smod
s4 12 0 11 0 smod
s5 out1 in1 11 0 smod
s6 out1 in2 12 0 smod
s7 out2 in3 11 0 smod
s8 out2 in4 12 0 smod
.model smod vswitch (ron=1e-4 roff=10000meg von=5 voff=1m)
.ends dual_relay

.SUBCKT Sw_tClose 1 2 PARAMS:
+ tClose=0 ; time at which switch begins to close
+ ttran=1u ; time required to switch states (must be realistic, not 0)
+ Rclosed=0.01 ; Closed state resistance
+ Ropen=10Meg ; Open state resistance (Ropen/Rclosed < 1E10)
V1 3 0 pulse(0 1 {tClose} {ttran} 1 10k 11k)
S1 1 2 3 0 Smod
.model Smod Vswitch(Ron={Rclosed} Roff={Ropen})
.ends

.SUBCKT Sw_tOpen 1 2 PARAMS:
+ tOpen=0 ; time at which switch begins to close
+ ttran=1u ; time required to switch states (must be realistic, not 0)
+ Rclosed=0.01 ; Closed state resistance
+ Ropen=10Meg ; Open state resistance (Ropen/Rclosed < 1E10)
V1 3 0 pulse(1 0 {tOpen} {ttran} 1 10k 11k)
S1 1 2 3 0 Smod
.model Smod Vswitch(Ron={Rclosed} Roff={Ropen})
.ends

Spice Model Package 5/7 Linear Regulators

************************************************
* L M 4 3 1 Subcircuit Model *
************************************************
.subckt sh_reg a k r ;a node c athode r eference
e1 1001 a r 1000 1e5
r0 1001 1002 1e-3
q1 k 1002 a qmod
vref 1000 a 2.5
.model qmod npn bf=1000 rb=1e-2 cjc=5p tf=10n
c1 r 1000 1p
.ends sh_reg
************************************************
*** end of library file

 

*****************************************************************************
* TL431 MACROMODEL ***************3-26-92************************************
* REV N/A ****************************************************************DBB
*****************************************************************************
* REFERENCE
* | ANODE
* | | CATHODE
* | | |
.SUBCKT TL431 1 2 3
V1 6 7 DC 1.4V
I1 2 4 1E-3
R1 1 2 1.2E6
R2 4 2 RMOD 2.495E3
R3 5 7 .2
D1 3 6 DMOD1
D2 2 3 DMOD1
D3 2 7 DMOD2
E1 5 2 POLY(2) (4,2) (1,2) 0 710 -710
.MODEL RMOD RES (TC1=1.4E-5 TC2=-1E-6)
.MODEL DMOD1 D (RS=.3)
.MODEL DMOD2 D (RS=1E-6)
.ENDS

*LM317 TI voltage regulator – pin order: In, Adj, Out
*TI adjustable voltage regulator pkg:TO-3
.SUBCKT LM317 1 2 3
J1 1 3 4 JN
Q2 5 5 6 QPL .1
Q3 5 8 9 QNL .2
Q4 8 5 7 QPL .1
Q5 81 8 3 QNL .2
Q6 3 81 10 QPL .2
Q7 12 81 13 QNL .2
Q8 10 5 11 QPL .2
Q9 14 12 10 QPL .2
Q10 16 5 17 QPL .2
Q11 16 14 15 QNL .2
Q12 3 20 16 QPL .2
Q13 1 19 20 QNL .2
Q14 19 5 18 QPL .2
Q15 3 21 19 QPL .2
Q16 21 22 16 QPL .2
Q17 21 3 24 QNL .2
Q18 22 22 16 QPL .2
Q19 22 3 241 QNL 2
Q20 3 25 16 QPL .2
Q21 25 26 3 QNL .2
Q22A 35 35 1 QPL 2
Q22B 16 35 1 QPL 2
Q23 35 16 30 QNL 2
Q24A 27 40 29 QNL .2
Q24B 27 40 28 QNL .2
Q25 1 31 41 QNL 5
Q26 1 41 32 QNL 50
D1 3 4 DZ
D2 33 1 DZ
D3 29 34 DZ
R1 1 6 310
R2 1 7 310
R3 1 11 190
R4 1 17 82
R5 1 18 5.6K
R6 4 8 100K
R7 8 81 130
R8 10 12 12.4K
R9 9 3 180
R10 13 3 4.1K
R11 14 3 5.8K
R12 15 3 72
R13 20 3 5.1K
R14 2 24 12K
R15 24 241 2.4K
R16 16 25 6.7K
R17 16 40 12K
R18 30 41 130
R19 16 31 370
R20 26 27 13K
R21 27 40 400
R22 3 41 160
R23 33 34 18K
R24 28 29 160
R25 28 32 3
R26 32 3 .1
C1 21 3 30PF
C2 21 2 30PF
C3 25 26 5PF
CBS1 5 3 2PF
CBS2 35 3 1PF
CBS3 22 3 1PF
.MODEL JN NJF(BETA=1E-4 VTO=-7)
.MODEL DZ D(BV=6.3)
.MODEL QNL NPN(EG=1.22 BF=80 RB=100 CCS=1.5PF TF=.3NS TR=6NS CJE=2PF
+ CJC=1PF VAF=100)
.MODEL QPL PNP(BF=40 RB=20 TF=.6NS TR=10NS CJE=1.5PF CJC=1PF VAF=50)
.ENDS LM317

.SUBCKT refz A K ;lm385
DFWD A K DF
GREV A K VALUE={LIMIT(20.00E-3*(EXP(V(A,K)/5.682E3)-1),-10M,0)}
RZ A 1 .102
GZ 2 1 VALUE={LIMIT(EXP(V(2,1)/198.0E-6),0,20.00E-3)}
EBV K 2 3 0 1
RBV 3 0 1.237E3 TC=1.139E-6 -346.8E-9
IBV 0 3 DC 1M
.MODEL DF D(IS=39.12E-15 RS=12.18 IKF=0 N=.9983 XTI=3)
.ENDS refz

*—————————————————————————–
*connections input
| ref
| | out
| | |
.subckt lm7805 1 2 3
iref1 1 5 dc 30u
x_refz 2 5 refz
x_opamp 5 4 1 2 6 opamp
qref 1 6 3 q2n2222
r1 4 2 1k
r2 4 3 3k
.ends lm7805

*—————————————————————————–
*connections input
| output
| | adjust
| | |
.subckt lm317_macro 1 2 3
iref1 1 4 dc 30u
x_refz 3 4 refz
x_opamp 4 2 1 2 5 opamp
qref 1 5 2 q2n2222
.ends lm317_macro

*—————————————————————————–
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt opamp 1 2 3 4 5
*
c1 11 12 2.887E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 21.22E6 -20E6 20E6 20E6 -20E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 59.61E-9
iee 3 10 dc 15.09E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 5.305E3
rc2 4 12 5.305E3
re1 13 10 1.845E3
re2 14 10 1.845E3
ree 10 99 13.25E6
ro1 8 5 50
ro2 7 99 25
rp 3 4 9.082E3
vb 9 0 dc 0
vc 3 53 dc 1.500
ve 54 4 dc 0.65
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18 Rs=1)
.model qx PNP(Is=800.0E-18 Bf=166.7)
.ends opamp

.model Q2N2222 NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307
+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1
+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75
+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)
* National pid=19 case=TO18
* 88-09-07 bam creation

 

*
*$

Spice Model Package 4/7 Pentodes

.subckt krn_6550 1 2 3 4 ;placca, griglia controllo, catodo, griglia schermo
+ params: mu=7.9 ex=1.35 kg1=890 kg2=5500 kp=60 kvb=24
+ ccg=14p cpg1=.85p ccp=12p rgi=1k
re1 7 0 1meg
e1 7 0 value =
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value =
+{(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value=
+{(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ;convergence resistor
c1 2 3 {ccg}
c2 1 2 {cpg1}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt krn_ef86 1 2 3 4 ;placca, griglia controllo, catodo, griglia schermo
***********************************
******documentazione philips*******
***********************************
+ params: mu=37.5 ex=1.2 kg1=1680 kg2=2500 kp=260 kvb=4
+ ccg=14p cpg1=.85p ccp=12p rgi=1k
re1 7 0 1meg
e1 7 0 value =
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value =
+{(pwr(v(7),ex)+pwrs(v(7),ex))*v(9)*atan(v(1,3)/kvb)}
g2 4 3 value=
+{(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ;convergence resistor
e2 9 0 table {v(2,3)} = ; exact matching only for pentode mode at vg2=140v
+ (-4, 8.264e-4) (-3.5, 7.937e-4)
+ (-3, 5.882e-4) (-2.5, 5.928e-4)
+ (-2, 5.764e-4) (-1.5, 5.790e-4)
+ (-1, 5.780e-4) (-.5, 5.882e-4)
+ (0, 5.988e-4)
re2 9 0 1g
c1 2 3 {ccg}
c2 1 2 {cpg1}
c3 1 3 {ccp}
r1 2 5 {rgi}
d3 5 3 dx
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends ef86 ; default values for triode operation kg1=1500 kg2=2500

.subckt 6550_nx 1 2 3 4 ; p g1 c g2
+ params: mu=7.9 ex=1.35 kg1=890 kg2=4200 kp=60 kvb=24
+ ccg=14p cpg1=.85p ccp=12p rgi=1k
re1 7 0 1meg ; dummy so node 7 has 2 connections
e1 7 0 value= ; e1 breaks up long equation for g1.
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value={(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
* g2 4 3 value={pwr(v(4,3)/mu+v(2,3),ex)/kg2}
rcp 1 3 1g ; for convergence
c1 2 3 {ccg} ; cathode-grid 1
c2 1 2 {cpg1} ; grid 1-plate
c3 1 3 {ccp} ; cathode-plate
r1 2 5 {rgi} ; for grid current
d3 5 3 dx ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt el34_nx 1 2 3 4 ; p g1 c g2
+ params: mu=11 ex=1.35 kg1=650 kg2=4200 kp=60 kvb=24
+ ccg=15p cpg1=1p ccp=8p rgi=1k
re1 7 0 1g ; dummy so node 7 has 2 connections
e1 7 0 value= ; e1 breaks up long equation for g1.
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value={(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ; for convergence
c1 2 3 {ccg} ; cathode-grid 1
c2 1 2 {cpg1} ; grid 1-plate
c3 1 3 {ccp} ; cathode-plate
r1 2 5 {rgi} ; for grid current
d3 5 3 dx ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6l6gc_nx 1 2 3 4 ; p g1 c g2
+ params: mu=8.7 ex=1.35 kg1=1460 kg2=4500 kp=48 kvb=12
+ ccg=14p cpg1=.85p ccp=12p rgi=1k
re1 7 0 1meg ; dummy so node 7 has 2 connections
e1 7 0 value= ; e1 breaks up long equation for g1.
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value={(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ; for convergence
c1 2 3 {ccg} ; cathode-grid 1
c2 1 2 {cpg1} ; grid 1-plate
c3 1 3 {ccp} ; cathode-plate
r1 2 5 {rgi} ; for grid current
d3 5 3 dx ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt kt88_nx 1 2 3 4 ; p g1 c g2
+ params: mu=8.8 ex=1.35 kg1=730 kg2=4800 kp=32 kvb=16
+ ccg=14p cpg1=.85p ccp=12p rgi=1k
re1 7 0 1meg ; dummy so node 7 has 2 connections
e1 7 0 value= ; e1 breaks up long equation for g1.
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value={(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ; for convergence
c1 2 3 {ccg} ; cathode-grid 1
c2 1 2 {cpg1} ; grid 1-plate
c3 1 3 {ccp} ; cathode-plate
r1 2 5 {rgi} ; for grid current
d3 5 3 dx ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt 6an8p_nx 1 2 3 4 ; p g1 c g2 ; section
+ params: mu=45 ex=1.35 kg1=520 kg2=120 kp=120 kvb=18
+ ccg=8p cpg1=.8p ccp=3p rgi=2k
re1 7 0 1meg ; dummy so node 7 has 2 connections
e1 7 0 value= ; e1 breaks up long equation for g1.
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value={(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ; for convergence
c1 2 3 {ccg} ; cathode-grid 1
c2 1 2 {cpg1} ; grid 1-plate
c3 1 3 {ccp} ; cathode-plate
r1 2 5 {rgi} ; for grid current
d3 5 3 dx ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends
.subckt 6p3c_nx 1 2 3 4 ; p g1 c g2 (pentode) 17-nov-2001
+ params: mu= 12.43 ex=1.000 kg1=364.6 kp=33.25 kg2=4500
+ kvb=29.3 vct=0.00 rgi=1k
+ ccg=11p cpg=.85p ccp=8.2p
re1 7 0 1meg
e1 7 0 value= ; e1 breaks up long equation for g1.
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value={(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ; for convergence
c1 2 3 {ccg} ; cathode-grid 1
c2 1 2 {cpg} ; grid 1-plate
c3 1 3 {ccp} ; cathode-plate
r1 2 5 {rgi} ; for grid current
d3 5 3 dx ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt gu50_nx 1 2 3 4 ; p g1 c g2 (pentode) 21-nov-2001
+ params: mu= 73.53 ex= 1.150 kg1= 194.7 kp= 13.28 kg2= 4500
+ kvb= 30.3 vct= 0.00 rgi=2k
+ ccg=14p cpg=0.1p ccp=9.2p
re1 7 0 1meg
e1 7 0 value= ; e1 breaks up long equation for g1.
+{v(4,3)/kp*log(1+exp((1/mu+v(2,3)/v(4,3))*kp))}
g1 1 3 value={(pwr(v(7),ex)+pwrs(v(7),ex))/kg1*atan(v(1,3)/kvb)}
g2 4 3 value={(exp(ex*(log((v(4,3)/mu)+v(2,3)))))/kg2}
rcp 1 3 1g ; for convergence
c1 2 3 {ccg} ; cathode-grid 1
c2 1 2 {cpg} ; grid 1-plate
c3 1 3 {ccp} ; cathode-plate
r1 2 5 {rgi} ; for grid current
d3 5 3 dx ; for grid current
.model dx d(is=1n rs=1 cjo=10pf tt=1n)
.ends

.subckt krn_ef86i a s g k
*
* calculate reduction in mu when vg < -3v
*
emu mu 0 value={limit{v(g,k),-3,999}+limit{v(g,k)+3,-999,0}*0.714}
*
* calculate contribution to cathode current
*
eat at 0 value={0.636*atan(v(a,k)/15)}
egs gs 0 value={limit{v(s,k)/27.5+v(mu)*1.32+1,0,1e6}}
egs2 gs2 0 value={pwrs(v(gs),1.5)}
ecath cc 0 value={v(gs2)*v(at)}
*
* calculate anode current
*
ga a k value={5.83e-4*v(cc)}
*
* calculate screen current
*
escrn sc 0 value={v(gs2)*(1.1-v(at))}
gs s k value={0.5e-3*v(sc)}
*
* capacitances
*
cg1 g k 3.8p
cak a k 5.3p
cg1a g a 0.05p
.ends

.subckt le_6l6 1 6 3 4 ; beam tetrode
g1 2 4 value = {((exp(1.5*(log((v(7,4)/8)+v(3,4)))))/1455)*atan(v(2,4)/10)}
g2 7 4 value = {(exp(1.5*(log((v(7,4)/8)+v(3,4)))))/9270}
c1 3 4 10p
c2 3 1 .6p
c3 1 4 6.5p
r1 3 5 1.5k
r2 2 4 100k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx2
d4 6 7 dx
d5 4 7 dx2
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_6l6 ; eq. 5881
**************************
.subckt le_el81 1 6 3 4 ; pentodo di segnale
g1 2 4 value = {((exp(1.5*(log((v(7,4)/35)+v(3,4)))))/380)*atan(v(2,4)/40)}
g2 7 4 value = {(exp(1.5*(log((v(7,4)/35)+v(3,4)))))/1000}
c1 3 4 11.5p
c2 3 1 0.02p
c3 1 4 6.5p
r1 3 5 1.5k
r2 2 4 100k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx2
d4 6 7 dx
d5 4 7 dx2
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_el81
************************
.subckt le_el34 1 6 3 4 ; pentode (philips)
g1 2 4 value = {((exp(1.5*(log((v(7,4)/8)+v(3,4)))))/1090)*atan(v(2,4)/10)}
g2 7 4 value = {(exp(1.5*(log((v(7,4)/8)+v(3,4)))))/8000}
c1 3 4 15.5p
c2 3 1 1p
c3 1 4 10.2p
r1 3 5 1.5k
r2 2 4 100k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx2
d4 6 7 dx
d5 4 7 dx2
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_el34 ; eq. 6ca7

.subckt le_6v6-gt 1 6 3 4 ; beam pentode (general electric)
g1 2 4 value = {((exp(1.5*(log((v(7,4)/10)+v(3,4)))))/2340)*atan(v(2,4)/10)}
g2 7 4 value = {(exp(1.5*(log((v(7,4)/10)+v(3,4)))))/3000}
c1 3 4 9p
c2 3 1 .7p
c3 1 4 7.5p
r1 3 5 1.5k
r2 2 4 100k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx2
d4 6 7 dx
d5 4 7 dx2
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_6v6-gt ; eq. 5v6-gt
*************************
.subckt le_6bq5 1 6 3 4 ; pentode (general electric)
g1 2 4 value = {((exp(1.5*(log((v(7,4)/20)+v(3,4)))))/420)*atan(v(2,4)/10)}
g2 7 4 value = {(exp(1.5*(log((v(7,4)/20)+v(3,4)))))/600}
c1 3 4 10.8p
c2 3 1 .5p
c3 1 4 6.5p
r1 3 5 1.5k
r2 2 4 100k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx2
d4 6 7 dx
d5 4 7 dx2
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_6bq5 ; eq. el84, pl84, 8bq5

.subckt le_807 1 6 3 4 ; beam pentode (rca) *experimental*
g1 2 4 value = {((exp(1.47*(log((v(7,4)/(-0.0011*v(3,4)*v(3,4)-0.0361*v(3,4)+7.5237))+v(3,4)))))/1643)*atan(v(2,4)/10)}
g2 7 4 value = {(exp(1.5*(log((v(7,4)/10)+v(3,4)))))/7000}
c1 3 4 12p
c2 3 1 .2p
c3 1 4 7p
r1 3 5 1.5k
r2 2 4 100k
d1 1 2 dx
d2 4 2 dx2
d3 5 4 dx2
d4 6 7 dx
d5 4 7 dx2
.model dx d(is=1p rs=1)
.model dx2 d(is=1n rs=1)
.ends le_807

Spice Model Package 3/7 Miscellanea

* Vacuum tube heater PSpice Model
*

*
* X1 Va Vb Heater params: VNOM=6.3 INOM=4.8 *(4x6L6+4x12AX7A)
* X2 R1 R2 Heater params: VNOM=5.0 INOM=1.9 *(1x5AR4/GZ34)
*
*
.SUBCKT Heater f1 f2 params: VNOM=6.3 INOM=600m
Grms 1 0 VALUE={1E-3*(V(f2,f1))*(V(f2,f1))/(VNOM*VNOM)}
Rt 1 0 1k
Ct 1 0 9.94m
Gf f2 f1 VALUE={V(f2,f1)*1.16*INOM/(VNOM*(PWR(V(1),0.3)+0.16))}
.ENDS Heater

.subckt sig_cable 10 20 18 19 ;modello distribuito di cavo di segnale
;da Cable Sonics? by Douglas Self
;Electronics World October 1997

+ params: Lp=1u ;Induttanza parassita per metro
+ Cp=50p ;Capacita’ parassita per metro
+ Rp=0.05 ;Resistenza Parassita per metro

***************
r1 10 11 {Rp/4}
r2 12 13 {Rp/4}
r3 14 15 {Rp/4}
r4 16 17 {Rp/4}
***************
***************
l1 11 12 {Lp/4}
l2 13 14 {Lp/4}
l3 15 16 {Lp/4}
l4 17 18 {Lp/4}
***************
c1 12 20 {Cp/4}
c2 14 20 {Cp/4}
c3 16 19 {Cp/4}
c4 18 19 {Cp/4}
***************
***************
R_dummy 20 19 1e-40 ;Questa resistenza e’ introdotta per avere un quadripolo
; a quattro pin nello schematico
.ends sig_cable

.SUBCKT INV_RIIA 1 2 3 4 ; in ref_in out ref_out Inverse Phono RIIA Quadripole
+ params: T1=3180u T2=318u T3=75u
ELAPLACE 3 4 1 2 Laplace=0.01*(1+{T3}*s)*(1+{T1}*s)/(1+{T2}*s)
.ends INV_RIIA

Spice Models Package 2/7 Magnetics

***********************
.subckt SOT1 in1 ctin in2 out1 ctout out2
+params: L=3H Rs=250 Ls=2500u cd=300p Rc=1meg
**************
Rsin1 in1 1 {Rs}
Rsin2 in2 2 {Rs}
Rsout1 5 out1 {Rs}
Rsout2 6 out2 {Rs}
cd1 in1 out1 {cd}
cd2 in2 out2 {cd}
L1 3 ctin {L}
L2 ctin 4 {L}
L3 5 ctout {L}
L4 ctout 6 {L}
Lsin1 1 3 {Ls}
Lsin2 2 4 {Ls}
*Lpin1 3 ctin {L-Ls}
*Lpin2 ctin 4 {L-Ls}
Rcin1 3 ctin {Rc}
Rcin2 ctin 4 {Rc}
Kc L1 L2 L3 L4 0.999
.ends SOT1
*************

***********************
.subckt SOT2 in1 ctin in2 out1 ctout out2
+params: L=3.15H Rs=680 Ls=3000u cd=300p Rc=1meg
**************
Rsin1 in1 1 {Rs}
Rsin2 in2 2 {Rs}
Rsout1 5 out1 {Rs}
Rsout2 6 out2 {Rs}
cd1 in1 out1 {cd}
cd2 in2 out2 {cd}
L1 3 ctin {L}
L2 ctin 4 {L}
L3 5 ctout {L}
L4 ctout 6 {L}
Lsin1 1 3 {Ls}
Lsin2 2 4 {Ls}
*Lpin1 3 ctin {L-Ls}
*Lpin2 ctin 4 {L-Ls}
Rcin1 3 ctin {Rc}
Rcin2 ctin 4 {Rc}
Kc L1 L2 L3 L4 0.999
.ends SOT2
*************

***********************
.subckt SOT3 in1 ctin in2 out1 ctout out2
+params: L=4.8H Rs=980 Ls=5000u cd=400p Rc=1meg
**************
Rsin1 in1 1 {Rs}
Rsin2 in2 2 {Rs}
Rsout1 5 out1 {Rs}
Rsout2 6 out2 {Rs}
cd1 in1 out1 {cd}
cd2 in2 out2 {cd}
L1 3 ctin {L}
L2 ctin 4 {L}
L3 5 ctout {L}
L4 ctout 6 {L}
Lsin1 1 3 {Ls}
Lsin2 2 4 {Ls}
*Lpin1 3 ctin {L-Ls}
*Lpin2 ctin 4 {L-Ls}
Rcin1 3 ctin {Rc}
Rcin2 ctin 4 {Rc}
Kc L1 L2 L3 L4 0.999
.ends SOT3
*************

 

********************************************
.subckt SOT1_i in1 ctin in2 out1 ctout out2
********************************************
*************************************************
* DESIGN IDEA #2539 EDN Magazine www.ednmag.com *
*************************************************
+params: L=3H Rs=250 Ls=2500u cd=300p Rc=1meg
***********************
Rsin1 in1 1 {Rs}
Rsin2 in2 2 {Rs}
Rsout1 7 out1 {Rs}
Rsout2 8 out2 {Rs}
cd1 in1 out1 {cd}
cd2 in2 out2 {cd}
Lsin1 1 3 {Ls}
Lsin2 2 4 {Ls}
Lpin1 3 ctin {L-Ls}
Lpin2 ctin 4 {L-Ls}
Rcin1 3 ctin {Rc}
Rcin2 ctin 4 {Rc}
Vsense1 7 5 0
vsense2 8 6 0
f_f1 9 0 vsense1 1
rf_f1 9 0 1meg
f_f2 10 0 vsense2 1
rf_f2 10 0 1meg
e1 5 ctout VALUE {(sqrt(L/(L-Ls)))*v(3,ctin)}
e2 ctout 6 VALUE {(sqrt(L/(L-Ls)))*v(ctin,4)}
g1 3 ctin VALUE {((10G)*sqrt(L/(L-Ls)))*v(9,0)}
g2 ctin 4 VALUE {((10G)*sqrt(L/(L-Ls)))*v(10,0)}
.ends SOT1_i

***********************
.subckt trfse 10 20 30 40 ; trafo single-ended 10-20 prim. 30-40 sec.
+ params: rplate=6000 rsec=8 indprim=40
l1 10 20 {indprim}
l2 30 40 {(rsec/rplate)*indprim}
kl1l2 l1 l2 .9999999
rconv1 10 20 1g
rconv2 30 40 1g
.ends trfse
***********************

.SUBCKT PAT-4006-CFB 1 2 3 4 5 6 7 8 9 10 11
* PLITRON PAT-4006-CFB OUTPUT TRANSFORMER 2KOHM UL PRIMARY
* OL NUMBERS CORRESPOND TO TRANSFORMER SCHEMATIC.
.PARAM PRIML=392.5 ; TOTAL PRIMARY L (FROM SPECS).
.PARAM LRATIO={5/2000} ; INDUCTANCE RATIO: (5 OHMS)/(PRIMARY).
.PARAM QFCTR=400000 ; Q-FACTOR: PRIMARY SHUNT L/LEAKAGE L.
LP1 1 2 {PRIML*.09} ; PRIMARY
LP2 2 3 {PRIML*.04}
LP3 3 4 {PRIML*.04}
LP4 4 5 {PRIML*.09}
CP1 1 5 .342NF ; CAPACITANCE FROM SPECS
LP5 8 7 {PRIML*LRATIO/4} ; 1/2 SPEAKER SECONDARY
LP6 7 6 {PRIML*LRATIO/4} ; ” “
LP7 11 10 {PRIML*LRATIO} ; 1/2 FBK WINDING
LP8 10 9 {PRIML*LRATIO} ; ” “
KALL LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8 .9999987 ; 1-1/(2*403600) AWESOME!
.ENDS

.SUBCKT DYNA_OUTPUT_XFRMR 1 2 3 4 5 6 7 8 9 ; PARAMETERS FOR MARK 3:
+PARAMS: LPRIM=60 LLKG=.040 RPRIM=125 CPRIM=1.04NF LRATIO={4/4300}

* ERIC BARBOUR ARTICLE: ~233H TOTAL PRIMARY L FOR MARK 3.
* MARK 3: LPRIM=60 LLKG=.040 RPRIM=125 CPRIM=1.04NF LRATIO={4/4300}

* LPRIM IS THE TOTAL PRIMARY L (VARIES WITH MEASUREMENT).
* LLKG IS THE LEAKAGE L (MEASURABLE: CONSISTENT).
* RPRIM IS THE TOTAL PRIMARY R.
* CPRIM IS THE MEASURED PRIMARY CAPACITANCE.
* LRATIO IS THE INDUCTANCE RATIO: (4 OHMS)/(PRIMARY Z).

.PARAM QFCTR={LPRIM/LLKG} ; Q-FACTOR.
CS1 1 5 {CPRIM} ; PRIMARY CAPACITANCE
RS1 1 5 300K ; SHUNT R FOR HIGH FREQUENCY EFFECTS.
LP1 1 12 {LPRIM*.09} ; .7164H ; PRIMARY
RP1 12 2 {RPRIM*.5}
LP2 2 3 {LPRIM*.04} ; .3184H
LP3 3 4 {LPRIM*.04}
LP4 4 45 {LPRIM*.09}
RP4 45 5 {RPRIM*.5}
LP5 7 6 {.34315*LPRIM*LRATIO} ; 8-16 OHM WINDING: (2-SQRT(2))^2
LP6 8 7 {.17157*LPRIM*LRATIO} ; 4-8 OHM WINDING: (SQRT(2)-1)^2
LP7 9 8 {LPRIM*LRATIO} ; COM-4 OHM WINDING
KALL LP1 LP2 LP3 LP4 LP5 LP6 LP7 {1-1/(2*QFCTR)} ; COUPLING
.ENDS

Spice Models Package 1/7 Diodes

********************************************
********************************************
* Vacuum Rectifier Model *
* y=(a+b*x)(x+eps)^c *
* Linear Regression Method *
* *
* by Stefano Perugini *
* *
********************************************
********************************************

***************************
.subckt vt_diode p1 p2 k ;
***************************
* Behavioural Parameters *
***************************
+ params: a=0.0022826785 b=0.00053174487 c=.5727007
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg

.ends vt_diode
*****************************

******************************
.subckt peru_5u4-gb p1 p2 k ;
+ params: a=0.0022826785 b=0.00053174487 c=.5727007
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
*rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
*rp2k p2 k 1meg
.ends
********************************************

********************************************
.subckt peru_5y3 p1 p2 k ;
+ params: a=0.0017537623 b=0.00011232924 c=.66291244
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
********************************************
********************************************
.subckt gz30 p k ;
+ params: a=0.003688338 b=0.0016926165 c=.44779226
+ eps=0.1
e1 1 0 value = {a+b*v(p,k)}
re1 1 0 1g
e2 2 0 value = {v(p,k)+eps}
re2 2 0 1g
g1 p k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
crpk p k 1.1n
.ends
********************************************
********************************************
.subckt peru_gz33 p1 p2 k ;
+ params: a=0.0064968776 b=0.0025909824 c=.54786535
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
********************************************
********************************************
.subckt peru_gz34 p1 p2 k ;
+ params: a=0.0065731838 b=0.000345434 c=1.0847522
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
********************************************
********************************************
.subckt peru_gz37 p1 p2 k ;
+ params: a=-0.0029258278 b=0.0016173462 c=.32420783
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
********************************************
********************************************
.subckt peru_gz41 p1 p2 k ;
+ params: a=0.0015812518 b=6.3003057e-5 c=1.0310134
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
********************************************
********************************************
.subckt peru_6x5 p1 p2 k ;
+ params: a=0.001841927 b=0.00010933508 c=0.91038464
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
********************************************
********************************************
.subckt peru_ez80 p1 p2 k ; U.S.A. equivalent 6v4
+ params: a=0.0013191127 b=7.3101291e-5 c=1.0368582
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
********************************************
********************************************
.subckt peru_ez81 p1 p2 k ;
+ params: a=0.0041968367 b=0.0002829324 c=0.91484084
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
***************************
***************************
.subckt peru_12x4 p1 p2 k ; parametri rilevati su tubo reale mod. Sylvania
+ params: a=0.0012211748 b=0.0004528104 c=0.55030857
+ eps=0.1
***************************
* first diode modelization*
***************************
e1 1 0 value = {a+b*v(p1,k)}
re1 1 0 10meg
e2 2 0 value = {v(p1,k)+eps}
re2 2 0 10meg
g1 p1 k value =
+ {1/2*(v(1)*(pwr(v(2),c)+pwrs(v(2),c)))}
*crp1k p1 k 1n
rp1k p1 k 1meg

****************************
* second diode modelization*
****************************
e10 10 0 value = {a+b*v(p2,k)}
re10 10 0 10meg
e20 20 0 value = {v(p2,k)+eps}
re20 20 0 10meg
g2 p2 k value =
+ {1/2*(v(10)*(pwr(v(20),c)+pwrs(v(20),c)))}
*crp2k p2 k 1n
rp2k p2 k 1meg
.ends
*******************************
*******************************